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Abstract—We discuss disk allocation methods for Cartesian
product files by introducing error correcting codes, and have
clarified the performance of the methods by system evaluation
models developed by using rate distortion theory. Let us assume
qn Cartesian product files with n attributes and q actual values in
each attribute, and store qn files into G(≤ qn) disks. For a partial
match access request, we represent new disk allocation methods
which able to access the disks in parallel as much as possible,
where the partial match access request includes an indefinite case
(don’t care: “∗”) in some attributes and the ∗ requires to access
the files with corresponding to the attribute for the all actual
attribute values. In this paper, we propose to apply unequal error
protection codes to the case where the probabilities of occurrence
of the ∗ in the attributes for a partial match access request are
not the same. We show the disk allocation methods have desirable
properties as n becomes large.

Index Terms—disk allocation, Cartesian product files, error
correcting codes, unequal error protection codes, system eval-
uation model, flexible, elastic, rate distortion theory, Chernoff
bound

I. INTRODUCTION

In the latter decade of 1970’s, J. Pearl and A. Crolotte
have discussed on the trade-off between amount of memory
and error in QA (Question Answering) systems based on rate-
distortion theory [9]. They clarified the conditions such that
we can reduce the amount of memory, if the small error
rate can be tolerated. These conditions are called “flexible”
or “elastic”. We have extended these conditions to be more
useful by generalized trade-off evaluation model, called system
evaluation model [4], [5] and have applied it to various
information systems [6], [7]. By using this model, we can
decide whether the system has “effective elastic” condition
or not, where the “effectively elastic” implies the relatively
effective property as the system size becomes large.

On the other hand, it is well known that the structure
of linear error correcting codes can be used to experimental
design [3], and disk allocation for files [1]. Let us assume the
qn Cartesian product files with n attributes and q actual values
in each attribute, and store qn files into G(≤ qn) disks. For a
partial match access request (PMAR), we intend to access the

disks in parallel as much as possible by using disk allocation
methods, where the PMAR includes an indefinite case (don’t
care: “∗”) in some attributes and the ∗ requires to access
the files for corresponding attribute to the all actual attribute
values.

In this paper, first we apply the system evaluation model
to the disk allocation methods, and discuss whether the disk
allocation methods satisfy the (effective) elastic condition or
not. Next, we extend them into the case where the probability
of the occurrence of the ∗ at i-th attribute Xi, Pr(zi = ∗) is
not uniform for i, where zi is the i-th actual attribute value.
We propose new disk allocation methods based on unequal
error protection (UEP) codes for PMAR, and we show that
the proposed methods are superior compared to those based
on equal error protection (EEP) codes 1 from the view-point
of the flexible condition.

II. PRELIMINARIES

A. Out Line of Rate-Distortion Theory

Rate-distortion theory discusses on information compres-
sion by the trade-off property between rate and distortion [2].
The rate-distortion function can be written by:

R = R(D), (1)

where R is the rate defined by R = (1/n) log M , and M is
the number of code words, n, the code length, and D, the
distortion. The R = R(D) is usually a convex downward
and non-increasing function of D. The function R = R(D)
suggests us that we can decrease the rate drastically with
tolerating a slightly growth of the distortion by proper source
encoding.

B. System Evaluation Model

Generally, the rate R discussed in the previous subsection
corresponds to the cost of a system, and distortion D, degra-
dation of the performance of the system [7]. By extending

1We use “EEP codes” to show the conventional error correcting codes to
contrast with UEP codes, although we have no such technical term.
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the trade-off evaluation model, we have proposed the system
evaluation model [5], where we have introduced a variable n
as the system size.

Let the rate R be normalized by the maximum of R, Rmax,
and the distortion D, by the maximum of D, Dmax, then we
have r = R/Rmax, and d = D/Dmax, and the normalized
function introducing n:

r = r(d, n). (2)

For evaluation of the systems, we define the following prop-
erties to the (normalized) system evaluation function (2):

Definition 1:
1) Flexible [9]: The system A with r = rA(d, n) is

flexible compared to the system B with r = rB(d, n), if
rA(d, n) < rB(d, n) for arbitrary d (0 < d < 1), and n
(n > 1).

2) Elastic [9]: The system with r = r(d, n) is elastic, if
r = r(d, n) is a decreasing function of n for arbitrary d
(0 < d < 1).

3) Effective elastic [5]: The system is effective elastic, if the
system is elastic and r = r(d, n) is a convex downward
function of n.

4) Trivial elastic [9]: The system with r = r(d, n) is trivial
elastic, if d = d(0, n) is a decreasing function of n,
where d = d(r, n) is the inverse function of r = r(d, n).

5) Marginal elastic [5]: The system with d = d(r, n) is
marginal elastic, if d = d(0, n) is a convex downward
function of n.

�
4) Trivial elastic and 5) Marginal elastic are sometimes ob-
served depending on the structure of systems (See [6]).

III. DISK ALLOCATION OF CARTESIAN PRODUCT FILES

A. Cartesian Product Files

Let a set of attributes be denoted by X1, X2, · · · , Xn, where
an actual attribute value of Xi (i = 1, 2, · · · , n) is given by a
domain Zi = {0, 1, 2, · · · , q − 1}. Then the Cartesian product
files are constructed by qn buckets, and each bucket is specified
by n-tuple (z1, z2, · · · , zn), zi ∈ Zi = {0, 1, 2, · · · , q − 1}.

B. Partial Match Access Request

A partial match access request (PMAR) Q to q-ary Carte-
sian product file is given by:

Q = (X1 = z1, X2 = z2, · · · , Xn = zn), (3)

where zi ∈ {0, 1, 2, · · · , q − 1, ∗}. The symbol ∗ shows an
indefinite value, hence ∗ = {0, 1, 2, · · · , q − 1}. This implies
that the ∗ at the attribute Xi of Q requires to access the files
with the all actual attribute values in Zi. Thus all attributes
are specified except for Xi, then we call such access request,
PMAR.

Example 1: (PMAR) Letting q = 2, and n = 4, an example
of the Cartesian product files is shown in Table I. If the PMAQ
is given by:

Q = (0, 0, ∗, 1), (4)

then we must access the buckets of (0, 0, 0, 1) and (0, 0, 1, 1),
since X3 of Q requires don’t care (whether married or not as
shown in Table I). �

TABLE I
EXAMPLE OF CARTESIAN PRODUCT FILE

X1(Sex) X2(Income $/year) X3(Married) X4(Age)
0 (Male) 0 (100k≤ ) 0(No) 0 (<20)

1 (Female) 1 (<100k) 1(Yes) 1 (20≤ )

C. Disk Allocation Methods

Let us consider a disk allocation problem of the Cartesian
product files. The problem is to partition the qn buckets into
G (G ≤ qn) disks so that we can access disks in parallel
to simultaneously different buckets. This problem can be
effectively solved by standard array appeared in coding theory.

Example 2: (Standard array) Letting q = 2, n = 6, G = 8,
and qn = 64, a construction method obtained by standard array
is shown in Table II. We easily see that the following PMAR
Q:

Q = (0, ∗, 1, ∗, 0, 0) (5)

can be accessed to the all required buckets of (0, 0, 1, 0, 0, 0),
(0, 0, 1, 1, 0, 0), (0, 1, 1, 0, 0, 0), and (0, 1, 1, 1, 0, 0) in parallel
at once by Table II. �

Let a set of the buckets required by PMAQ Q be S(Q). If
zi = ∗, and zj = ∗, (i �= j), we hope to access simultaneously
q2 disks in parallel so that we can decrease the access time.
Obviously, the maximum value of G, Gmax = qn, and the
minimum value of G, Gmin = 1. It is known that coding theory
gives the following Lemma by using q-ary (n, k, d) code C,
where n is the code length, k, the number of information
symbols, and d, minimum distance.

Lemma 1: [1] Let the number of the ∗ occurred in Q be
w (0 ≤ w ≤ n). If 0 ≤ w < d, then a disk allocation method
based on a q-ary (n, k, d) code is the optimum. �
Lemma 1 states that the q-ary (n, k, d) code can give the
method for accessing the qw buckets in parallel at once, if
w < d.

IV. EVALUATION OF DISK ALLOCATION METHODS

A. Formulation of Disk Allocation Methods

Let the qn bucket be stored in qn−k disks 2 by using an
(n, k, d) code C. For given PMAR Q, we let the number of
access time to disks for S(Q) be J . While we let a set of
bucket accessible by using code C with J = 1 be S(C).
Then we give the evaluation loss (distortion measure) as the
following definition.

Definition 2: The evaluation loss ρ is given by:

ρ =
{

0 (J = 1)
1 (J ≥ 2). (6)

�
2Note that the number of disks G equals to the number of coset of codes

C.
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TABLE II
STANDARD ARRAY FOR q = 2, n = 6, AND G = 8
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The ρ is roughly defined to evaluate the access performance,
it is, however, enough to evaluate the access time as described
below. In (6), J = 1 implies S(Q) ⊆ S(C), and J ≥ 2,
S(Q) ⊃ S(C).

Using (6), the (average) access performance of the method
constructed by the code C, ν is given by:

ν = 0 × Pr(J = 1) + 1 × Pr(J ≥ 2) = Pr(J ≥ 2). (7)

Note that ν is already normalized. On the other hand, the cost
G of the method constructed by the code C, i.e., the number
of disks G is given by:

G = qn−k. (8)

Obviously, the maximum of G, Gmax = qn, we have the
normalized cost g as:

g = G/Gmax = q−k. (9)

B. Equal Probability Case

Let the probability of occurrence of the ∗ at the i-th attribute
in PMAR Q be Pr(zi = ∗), and let it be uniform distribution
such that Pr(zi = ∗) = Pr(∗) = p independent of i. Then
from Lemma 1, we have

Pr(J ≥ 2) ≤ Pr(w ≥ d). (10)

Substitution of (10) into (7) gives ν, simply ν ≤ Pr(w ≥ d).

C. Unequal Probability Case

Let us consider a case where Pr(zi = ∗) is distinct of
i. Then in such case, the following unequal error protection
(UEP) codes [8], [12], [11] can play an important role to
construct the disk allocation methods. We illustrate a UEP code
Cu in Fig. 1, where Pr(zi = ∗) = p1 for i = 1, 2, · · · , n1,
Pr(zj = ∗) = p2 for j = n1 + 1, n1 + 2, · · · , n2, and
n = n1 + n2. A simplest case as shown in Fig. 1 is called
the 2-split UEP code, where n1 (n2), d1 (d2), and p1 (p2) are
the code length, the minimum distance, and the probability of
occurrence of the ∗ in the 1st part (2nd part ) of the UEP code
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Fig. 1. 2-split UEP code Cu[(n1, n2), M, (d1, d2)]

Cu, respectively, and M is the number of the code words, i.e.
the rate R is given by R = (1/n) log M .

Lemma 2: [8] The [(n1, n2),M, (d1, d2)] UEP code can
access the disks with J = 1 as follows:

1) When w1 = 0, then J = 1 if w2 < d2.
2) When w1 ≥ 1, then J = 1 if w1 + w2 < d1.

�
From Lemma 2, we have the following theorem.

Theorem 1: Suppose a set of buckets S(Cu) accessible to
the disks with J = 1 using the code Cu. Then the probability
of the access time with J ≥ 2 satisfies:

Pr(J ≥ 2) ≤ Pr(w1 = 0) Pr(w2 ≥ d2)

+
n1∑

s=1

Pr(w1 = s) Pr(w2 ≥ d1 − s), (11)

where w1 (w2) is the number of the ∗ in the 1st part (2nd part)
of the UEP code Cu.
Proof: Using the inverse of the sufficient conditions stated in
1), and 2) in Lemma 2, we can easily derive (11). �
Substitution of (11) into (7) gives ν.

D. Calculation for Evaluation

In the previous subsection, we derive the access perfor-
mance ν, and the cost g. Note that ν and g can be given
by the functions of parameters (n, k, d) for a code C, and
[(n1, n2),M, (d1, d2)] for a UEP code Cu. Then we simply
denote the functions by ν = ν(d, n), and g = g(k, n) for the
code C, and by ν = ν(d1, d2, n1, n2), and g = g(M,n) for
the code Cu.

To compute the functions ν and g, we can use

• The LP upper bound [12] 3: M ≤ f(d1, d2, n1, n2)
• The Gilbert lower bound [10]: d/n ≤ H−1(1 − R), n →

∞
• Constructive codes such as BCH codes and RS codes.

3The LP upper bound gives an upper bound on M (or R) solving the
existence area of a code C and Cu by linear programming for given code
parameters. Hence the computed results are given by a table.
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Fig. 2. LP upper bound by codes C (p = 0.5): BD-EEP

Fig. 3. LP upper bound and Gilbert lower bound by codes C (p = 0.3, and
n = 10): BD-EEP

where R = k/n, or R = (1/n) log M holds. We have no
bound up to now corresponding to the Gilbert lower bound for
codes Cu. On the other hand, the LP upper bound can apply
to both codes C and codes Cu. Note that the LP upper bound
gives the lower bound on g, since g = 1/M , and similarly the
Gilbert lower bound, the upper bound on g, since g = q−k.

V. NUMERICAL RESULTS

A. Binomial Distribution (BD)

Assuming that the probability of occurrence of the ∗ in a
disk allocation method constructed by the code C or the code
Cu is given by the binomial distribution (BD) function, we
have the following results (See Appendix A):

1) Cases by (EEP) codes C: Fig. 2 shows a case of p =
0.5, where we have used the LP upper bound. The difference
between the LP upper bound and the Gilbert lower bound is
depicted in Fig. 3 for a case of p = 0.3, and n = 10.

2) Cases by (UEP) codes Cu: Fig. 4 shows a case of p1 =
0.5, and p2 = 0.25, where we have used the LP upper bound.
The difference between codes C and codes Cu is illustrated in
Fig. 5 for a case of p1 = 0.5, and p2 = 0.25. Fig. 6 shows g
as a function of n using the LP upper bound by codes C and
by codes Cu.

B. Chernoff Bound (CB)

To compute the access performance ν, we use the Chernoff
bounding (CB) techniques which are known in information
theory [2] to evaluate coding systems. We have the following
results (See Appendix B) without assuming any probability
distribution function of occurrence of the ∗:
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Fig. 4. LP upper bound by codes Cu (p1 = 0.5, and p2 = 0.25): BD-UEP
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Fig. 5. LP upper bound by codes C and codes Cu (p1 = 0.5, and p2 = 0.25)
: BD-EEP, BD-UEP

1) Cases by (EEP) codes C: Fig. 7 shows a case of p =
0.3, where we have used the LP upper bound. The difference
between a binomial distribution and the Chernoff bound is
illustrated in Fig. 8 for a case of p = 0.3, and n = 10.

2) Cases by (UEP) codes Cu: Fig. 9 shows the difference
between a binomial distribution and the Chernoff bound for a
case of p1 = 0.5, and p2 = 0.25, where we have used the LP
upper bound.

C. Discussions

Since codes C and codes Cu exist discretely, the curves as
shown in Figs.2-9 obtained by calculation for given parameters
are not continuous and smooth. Hence we will roughly discuss
evaluation results 4.

1) Elastic and effective elastic: We see that from Figs. 2,
and 5, the disk allocation methods constructed by both codes
C and codes Cu are elastic. As illustrated in Fig. 6, where we
show the cost g as a function of system size n, we also see
that the disk allocation methods constructed by both codes C
and codes Cu are effective elastic.

2) Flexible: Fig. 5 also shows the disk allocation methods
constructed by both codes C and codes Cu

5 for a case of
p1 = 0.5, and p2 = 0.25, where the codes C are chosen to
be the optimum for given parameters. This figure tells us that
the disk allocation method constructed by codes Cu is flexible

4We have evaluated the methods based on codes C and codes Cu in various
cases. Although results obtained in these cases are omitted here, they support
to hold the properties such as elastic, effective elastic, or flexible.

5It sometimes happens that as seen in Fig. 5, codes C are superior compared
to codes Cu (n = 5, for ν = 0.75). The reason is that generally we have
more effective (EEP) codes C than (UEP) codes Cu for given parameters.
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Fig. 6. LP upper bound by codes C (p = 0.5, ν = 0.2, and ν = 0.5) and
codes Cu (p1 = 0.5, p2 = 0.25, ν = 0.2, and ν = 0.5): BD-EEP, BD-UEP
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Fig. 7. LP upper bound by codes C (p = 0.3): CB-EEP

compared to that by codes C, since the curves of the former
are lower than those of the latter. This result implies that it
is better to construct a disk allocation method based on codes
Cu than codes C for given parameters p1 and p2.

3) Bounding techniques: We use the bounding results from
coding theory given by the LP upper bound and the Gilbert
bound. These two bounds guarantee the existence of disk
allocation methods as shown by shaded area in Fig. 3.

We also use Chernoff bounding techniques for calculating
ν without assuming the probability distribution for occurrence
of the ∗. On the other hand, assuming the binomial distribution
for it, the difference between them is depicted in Figs. 8 and 9
for codes C. We see that the Chernoff bound is a good upper
bound on g enough to show the properties such as elastic,
effective elastic, or flexible, although n is relatively small, and
p1 and p2 are relatively large 6.

VI. CONCLUDING REMARKS

In our another paper [11], we have precisely analyzed the
performance of disk allocation methods from view-point of the
average access time and the number of disks. In this paper, our
approach is slightly different compared to [11], since we are
interested in an application of system evaluation model. As
the results obtained by the system evaluation model of the
disk allocation methods constructed by error correcting codes,
we can conclude that the g = g(ν, n) is:

(i) an elastic function
(ii) an effective elastic function

6It is known that the Chernoff bound is always valid, and is usually tight
upper bound when n becomes large and p, p1, and p2 are small [2].
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Fig. 8. Binomial distribution and Chernoff bound by codes C using LP upper
bound (p = 0.3, and n = 10): BD-EEP, CB-EEP
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Fig. 9. Binomial distribution and Chernoff bound by codes Cu using LP
upper bound (p1 = 0.5, p2 = 0.25, and n = 20): BD-UEP, CB-UEP

and
(iii) if the occurrence of the ∗ is not uniform, disk allocation

methods constructed by UEP codes Cu are flexible
compared to those by codes C.

The (i) states that tolerating a small access performance
degradation in ν introduces a drastic saving of the cost g, and
this property can be effectively enhanced by the number of
attribute n becomes large as seen in (ii). We can also remark
that the UEP codes Cu are useful for the disk allocation
methods if the probabilities of occurrences of the ∗ are not
uniform as stated in (iii).

We note that the LP upper bound can give the case
of L(>2)-split UEP codes, hence we can discuss the disk
allocation methods in general. Furthermore, although we have
only discuss in this paper on cases for q = 2, cases for q ≥ 3
are straight forward, since we already have q-ary codes C and
codes Cu, and their upper bounds, where q(≥ 2) is a prime
power.

To compute a function such as g = F (ν, n) using the
Chernoff bounding techniques by analytically and to show the
effective elastic directly will be rest as a further research.
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APPENDIXES

A. Derivation by Binomial Distribution
By the (n, k, d) code C, we have from (10):

ν = Pr(J ≥ 2) ≤ Pr(w ≥ d)

=
n∑

i=d

(
n
i

)
pi(1 − p)n−i, (12)

and

g = q−k. (13)

While by the [(n1, n2),M, (d1, d2)] code Cu, we have from
Theorem 1, (11):

ν = Pr(J ≥ 2)

≤ (1 − p1)n1

n2∑
i=d2

(
n2

i

)
pi
2(1 − p2)n2−i

+
n1∑

s=1

{(
n1

s

)
ps
1(1 − p1)n1−s

×
n2∑

j=d1−s

(
n2

j

)
pj
2(1 − p2)n2−j , (14)

and

g = 1/M. (15)

B. Derivation by Chernoff Bound [10]
By the (n, k, d) code C, we have from (10):

ν = Pr(J ≥ 2) ≤ Pr(w ≥ d)
≤ exp[−nE(λ, p)], (16)

where

E(λ, p) = −λ ln p − (1 − λ) ln(1 − p) − H(λ), (17)

H(x) = −x lnx − (1 − x) ln(1 − x), (18)

and

λ =
d

n
, λ > p. (19)

While by the [(n1, n2),M, (d1, d2)] code Cu, we have from
Theorem 1, (11):

ν = Pr(J ≥ 2)
≤ (1 − p1)n1 Pr(w2 ≥ d2)

+
α∑

s=1

1 · Pr(w2 ≥ d1 − s)

+
n1∑

s=α+1

Pr(w1 ≥ s) Pr(w2 ≥ d2 − s) (20)

≤ exp[n1 ln(1 − p1) − n2E(λa,1, p2)]

+
α∑

s=1

exp[−n2E(λb,1, p2)]

+
n1∑

s=α+1

exp[−n1E(λb,2, p1) − n2E(λb,3, p2)], (21)

where

λa,1 =
d2

n2
, 1 ≥ λa,1 > p2, (22)

λb,1 =
d1 − s

n2
, 1 ≥ λb,1 > p2, (s = 1, 2, · · · , α) (23)

λb,2 =
s

n1
, 1 ≥ λb,2 > p1, (s = α + 1, · · · , n1) (24)

λb,3 =
d1 − s

n2
, 1 ≥ λb,3 > p2, (s = α + 1, · · · , n1) (25)

and α = n1p1.
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