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あらまし ユニットメモリトレリス符号によって構成されたブロック符号について，ランダム符号化の立場から議論

する．トレリス符号からブロック符号を得る方法には，（i）テールターミネーション（TT），（ii）ダイレクトトラン

ケーション（DT），および（iii）テールバイティング（TB）の 3つの方法がある．本論文では，ユニットメモリトレ

リス符号によって構成されたブロック符号について，上記 3つの方法によるブロック符号の誤り指数を導出する．与

えられたブランチ長さで，テールバイティングユニットメモリ（TB-UM）トレリス符号の誤り指数は，テールターミ

ネーションユニットメモリ（TT-UM）および，ダイレクトトランケーションユニットメモリ（DT-UM）トレリス符

号のそれらに比べ，通信路容量未満のすべてのレートにおいて大きいことを示す．また，復号の複雑さを考慮に入れ

ると， TB-UMトレリス符号の復号誤り確率の上界は同一の復号の複雑さと低レートを除く同一のレートにおいて，

通常のブロック符号のそれより小さいことを示す．
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Abstract Block codes constructed by unit memory trellis codes are discussed from random coding arguments.

There are three methods to obtain block codes from trellis codes, i.e., those of (i) Tail Termination (TT), (ii) Direct

Truncation (DT), and (iii) Tail Biting (TB). In this paper, we discuss exponential error bounds for block codes

constructed by the unit memory (UM) trellis codes based on the above three methods and error exponents for these

codes are derived. For a given branch length, the error exponent of the tail biting unit memory (TB-UM) trellis

codes is shown to be larger than those of the tail termination unit memory (TT-UM) and the direct truncation unit

memory (DT-UM) trellis codes for all rates less than the capacity. Taking into account of the decoding complexity,

the TB-UM trellis codes are also shown to have a smaller upper bound on the probability of decoding error than

the ordinary block codes for the same rate except for low rates with the same decoding complexity.

Key words Block codes, trellis codes, tail biting, unit memory, error exponents, decoding complexity, maximum–
likelihood decoding

— 1 —



1. Introduction

It had been introduced to use unit memory (UM) convolu-

tional codes as a byte oriented code [8]. In early 80’s, bounds

on free distances and error exponents of the UM trellis codes

had been discussed [15]. The UM trellis codes had shown

to have larger error exponents compared to ordinary trellis

codes for low rates. Since we have already obtained powerful

construction methods and efficient decoding algorithms for

block codes, we can effectively use them as component codes

of the UM trellis codes. Therefore, the UM trellis codes have

a property combining the advantages of both block codes and

trellis codes. Note, however, that decoding delay for the UM

trellis codes has a probabilistic value. Hence sometimes, it

is not tolerable to practical applications.

There are three methods to obtain block codes from trel-

lis codes, i.e., those of (i) Tail Termination (TT), (ii) Direct

Truncation (DT), and (iii) Tail Biting (TB). Especially, (iii)

tail biting (TB) trellis codes [10] are known to be one of the

most powerful codes for converting trellis codes into block

codes with no loss in rates. Since the TB trellis codes require

an intolerable increase in the decoding complexity, much ef-

forts have been devoted to the studies on suboptimum de-

coding algorithms [1], [10] or efficient maximum-likelihood

decoding algorithms [11], [14], [16]. Unfortunately, however,

the decoding complexity of the latter algorithms in worst case

are the same as that of the complete maximum-likelihood de-

coding algorithm, although it is asymptotically the same as

that of the Viterbi algorithm when the signal to noise ratio

becomes large [16].

On the other hand, a coding theorem obtained by clas-

sical random coding arguments gives us simple and elegant

results on coding schemes, although it states only an exis-

tence of a code. Random coding arguments can demonstrate

the essential mechanism on coding systems. Since we require

complete maximum-likelihood decoding (MLD), the relation-

ship between the probability of decoding error Pr(E) and the

decoding complexity G(N) at a given rate r, or R, can be

made clear, where N is the code length. It should be noted

that the coding theorem can only suggest the behavior of

the code ensemble, hence it is not useful enough to design a

practical code.

In this paper, we discuss the performance of the block

codes constructed by the UM trellis codes based on the above

three methods, i.e., the Tail Termination UM (TT-UM) trel-

lis codes, the Direct Truncation UM (DT-UM) trellis codes,

and the Tail Biting UM (TB-UM) trellis codes. For a given

branch length, the error exponent of the TB-UM trellis codes

is shown to be larger than those of the TT-UM and the DT-

UM trellis codes for all rates less than the capacity. Taking

into account of the decoding complexity G(N), the former is

also shown to have a smaller upper bound on the Pr(E) than
the ordinary block codes for the same r = R except for low

rates with the same G(N).

Throughout this paper, assuming a discrete memoryless

channel with capacity C, we discuss the lower bounds on the

reliability function E(·) for block codes and e(·) for trellis

codes, and asymptotic decoding complexity G measured by

the computational work [12]. The probability of decoding

error is denoted by Pr(E), the rate, r or R, the code length,

N , and the decoding complexity, G(N).

In section 2, we briefly review on the error exponents of

the block codes and the trellis code as preliminaries. Sec-

tion 3 shows the results of the UM trellis codes [15]. We

derive error exponents and decoding complexity for the TT-

UM trellis codes, the DT-UM trellis codes, and the TB-UM

trellis codes in section 4 1). Section 5 discusses the results

on the exponential error bounds and asymptotical decoding

complexity. Section 6 is concluding remarks of this paper.

2. Preliminaries

2. 1 Block codes

Let an (N,K) block codes over GF (q) be an ordinary block

code of lengthN , number of information symbolsK, and rate

R, where

R = (K/N) ln q (K <= N). [nats/symbol] (1)

From random coding arguments for an ordinary block code,

there exists a block code of length N and rate R for which

the probability of decoding error Pr(E) and the decoding

complexity G(N) satisfy

Pr(E) <= exp[−NE(R)] (0 <= R < C), (2)

and

G(N) ∼ N exp[NR], (3)

where E(·) is (a lower bound on) the block code exponent [5],

and the symbol ”∼” indicates asymptotic equality.

2. 2 Trellis codes

Let a (u, v, b) trellis code over GF (q) be a code of branch

length u, branch constraint length v, yielding b channel sym-

bols per branch, and rate r, which satisfies

r = (1/b) ln q. [nats/symbol] (4)

The probability of decoding error Pr(E) and the decoding

complexity G(v) satisfy [5]

Pr(E) <= uK1 exp[−vbE0(ρ)] (0 <= ρ <= 1) (5)

<= exp{−vb[e(r)− o(1)]} (0 <= r < C), (6)

and

G(v) ∼ u2qv, (7)

where K1 is a constant independent of v, o(1) → 0 (v → ∞),

and e(·) is (a lower bound on) the trellis code exponent [5]

given by

e(r) =

{
E0(1) 0 <= r <= Rcomp

E0(ρr) Rcomp < r = E0(ρr)/ρr < C,
(8)

where E0(ρ) is the Gallager’s function, and Rcomp = E0(1)

is the computational cut-off rate of the channel. Note that

the following relation holds between E(R) and e(r):

E(R) = max
0<µ<=1

(1− µ)e(R/µ), (9)

which is called the concatenation construction [5]. Similarly,

letting

θ = v/u, (10)

the following equation also holds [5]:

1）：This paper describes the detailed derivations or the proof of [6].
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e(r) = min
0<θ<=1

(1/θ)E[(1− θ)r], (11)

which is called the inverse concatenation construction [5].

The block code exponent E(R), and the trellis code expo-

nent e(r) are shown in Figure 1 for a very noisy channel.

3. Unit memory (UM) trellis codes

For the (u, v, b) conventional trellis code discussed in the

previous section, letting v = 1 and introducing an (n0, k0)

block code to each branch as a component code, we have

a (u, n0, k0) unit memory (UM) trellis code. Note that we

let n0 → ∞ for the UM trellis codes, while v → ∞ for the

conventional trellis codes.

Let a (u, n0, k0) unit memory (UM) trellis code over GF (q)

be a code of branch length u, length of component code n0,

number of information symbols of component code k0, and

rate r, which satisfies

r = (k0/n0) ln q. [nats/symbol] (12)

［Lemma 1］（Thommesen & Justesen [15]） There exists a

(u, n0, k0) unit memory (UM) trellis code for which the prob-

ability of decoding error Pr(E) and the decoding complexity

G(n0) satisfy

Pr(E) <= exp[−n0eUM(r)] (0 <= r < C), (13)

and 2)

G(n0) ∼ u2n0q
2k0 = u2n0 exp[2n0r], (14)

where

eUM(r) =

{
2E(r/2) (0 <= r <= Rcomp)

e(r) (Rcomp < r < C),
(15)

holds. 2

We then easily have [15]

eUM(r) = 2E(r/2) > e(r) (0 <= r < Rcomp). (16)

4. Block codes constructed by unit mem-

ory (UM) trellis codes

Let us consider a (u, n0, k0) unit memory (UM) trellis code,

and we let this code be converted to a block code by using the

methods described above. Since we shall compare the con-

ventional (N,K) block code to the block codes constructed

by the UM trellis codes, the code length N is chosen as:

N = u0n0, (17)

denoting

0 <= θ0 = 1/u0 <= 1/2, (18)

where u0 is the branch length and is an integer such that

u0 = 2, 3, · · · .
4. 1 Tail termination unit memory (TT-UM) trel-

lis codes

Letting a (u, n0, k0) unit memory code be terminated at

2）：The number of the states of the Viterbi decoder is qk0 , and at

each state it compares qk0 survivors. The decoder repeats it u times,

where the length of the register is un0. Then the over-all decoding

complexity of the UM trellis code is given by (14).

branch u0, we have a (u0, n0, k0) tail termination unit mem-

ory (TT-UM) trellis code over GF (q) of length N = u0n0,

and rate R. We then easily have the following lemma [5],

where actual rate R = (1− θ0)r, and r = (k0/n0) ln q.

［Lemma 2］ The probability of decoding error Pr(E) and

the decoding complexity G(N) for the TT-UM trellis code

are given by

Pr(E) <= exp[−NETT-UM(R)] (0 <= R < C), (19)

where

ETT-UM(R) = Ẽ(R), (20)

Ẽ(R) = θ0eUM[R/(1− θ0)] (θ0 = 1/u0, u0 = 2, 3, 4, · · · ),
(21)

and

G(N) ∼ u0Nq2k0 = u0N exp[2Nθ0r]. (22)

2

If θ0 takes real values, then (21) gives E(R) by the con-

catenation construction [5] of (9) replaced by ν = 1 − θ0.

However, θ0 = 1/u0, u0 = 2, 3, 4, · · · , the rhs of (21) is con-

sisted by the set of straight lines for discrete values of θ0.

Hence the following relation holds:

Ẽ(R) <= E(R), (23)

where the lhs of (23) are given by the set of tangent lines to

E(R) which is the upper envelop of the straight lines.

4. 2 Direct truncation unit memory (DT-UM)

trellis codes

Similarly, truncation at branch u0 of a (u, n0, k0) unit

memory trellis code gives a (u0, n0, k0) direct truncation

unit memory (DT-UM) trellis code over GF (q) of length

N = u0n0, and rate r. We then have the following lemma,

where there is no loss in rate.

［Lemma 3］ For the DT-UM trellis code, Pr(E), and G(N)

are given by

Pr(E) <= exp[−NeDT-UM(r)] (0 <= r < C), (24)

where

EDT-UM(r) = E(r), (25)

and

G(N) ∼ u0Nq2k0 = u0N exp[2Nθ0r], (26)

where N = u0n0, and r = (k0/n0) ln q. 2

(Proof) See Appendix A.

4. 3 Tail biting unit memory (TB-UM) trellis

codes

Again consider a (u, n0, k0) unit memory (UM) trellis code,

and we let this code be converted to a block code by using

tail biting techniques.

Let w ∈ Xu0k0 be a message sequence of (branch) length

u0, where X is the channel input alphabet. Each node is

composed of an (n0, k0) block component code and rewrite

w as

w = (w1,w2, · · · ,wu0). (27)
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[Encoding Procedure]

(i) Initialize the encoder by inputting the last k0 informa-

tion (branch) symbols wu0 of u0k0 information (branch)

symbols w, and disregard the output of the encoder.

(ii) Input all u0k0 information symbols w into the encoder,

and output the codeword x ∈ XN of length N = u0n0 in

channel symbols, where rate r = (k0/n0) ln q. 2

The resultant code is a (u0, n0, k0) tail biting unit memory

(TB-UM) trellis code, and the rate of this code is the same

as that of the UM trellis code. Hence there is no loss in rate,

in contrast to the TT-UM trellis code whose rate reduces to

R = (1− θ0)r.

［Theorem 1］ There exists a (u0, n0, k0) tail biting unit

memory (TB-UM) trellis code for which the probability of

decoding error Pr(E) and the decoding complexity G(N) sat-

isfy

Pr(E) <= exp[−NETB-UM(r)] (0 <= r < C), (28)

where

ETB-UM(r) = min
θ0=1/u0,u0=2,3,4,···

{
θ0eUM(r), E[(1− θ0)r]

}
,

(29)

and

G(N) ∼ u0Nq3k0 = u0N exp[3Nθ0r], (30)

where N = u0n0 and r = (k0/n0) ln q. 2

(Proof) See Appendix B 3).

5. Discussions

5. 1 Exponential error bounds

We have derived error exponents as given by (20), (25),

and (29) for the TT-UM, the DT-UM, and the BT-UM trellis

codes, respectively. As the summary, we have the following

corollary from (23).

［Corollary 1］ For the same rate r = R, and a given θ0
(0 <= θ0 <= 1/2), the following relation holds:

ETT-UM(R) <= EDT-UM(r) <= ETB-UM(r). (31)

2

Finally, we give computational results for a very noisy

channel.

［Example 1］ Over a very noisy channel (VNC), the er-

ror exponent ETB-UM(r) for the TB-UM trellis codes is de-

picted in Figure 1 together with that ETT-UM(R) for the

TT-UM trellis code. As stated in Corollary 1, for a given

u0, ETT-UM(R) <= ETB-UM(r) holds for all rates r = R. Since

θ0 = 1/2, 1/3, · · · , ETT-UM(R) is given by the set of straight

lines, and it is close to the curve E(R) as its tangent lines,

hence ETT-UM(R) <= E(R) always holds. Note that by the

result of numerical computation, the second term of the rhs

of (29) does not affect ETB-UM(r) for all rates over the VNC.

2

3）：To prove Theorem 1, a decoding procedure is stated also in Ap-

pendix B.
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Figure 1 Error exponents for a very noisy channel

(0 <= θ0 <= 1/2).

5. 2 Asymptotic decoding complexity

Using (22), (26), and (30), we shall discuss the decoding

complexity of the block codes constructed by the UM trellis

code based on the three methods. The probability of decod-

ing error Pr(E) can be rewritten in terms of the decoding

complexity G as shown in the following.

［Corollary 2］ The following inequalities hold for a given θ0
(0 <= θ0 <= 1/2):

For the TT-UM trellis codes

Pr(E) <∼ G
− (1−θ0)E(R)

2θ0R , (32)

for the DT-UM trellis codes

Pr(E) <∼ G
−E(R)

2θ0R , (33)

and for the TB-UM trellis codes

Pr(E) <∼ G− eUM(r)
3r . (34)

2

(Proof) See Appendix C.

Comparing the ordinary block code and the TB-UM trellis

code, we have the following interesting theorem.

［Theorem 2］ For the same decoding complexity G(N) and

the same rate r = R, for all rates except for low rates, the

upper bound on the probability of decoding error Pr(E) for

the TB-UM trellis code is asymptotically smaller than that

for the ordinary block code. 2

(Proof) See Appendix D.

This theorem suggests us that we can attain smaller Pr(E)
for the TB-UM trellis code than that for the block code, for

all rates except for low rates 4), although the decoding com-

plexity G of the former grows exponentially with 3N , while

that of the latter, with only N . Note that, however, the

Pr(E) decreases only algebraically with G.

4）：Over VNC, it is valid for C/4 <= r = R < C, which is also true for

tail biting trellis codes [7].
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6. Concluding remarks

We have shown that the upper bound on the probability of

decoding error of the block code is improved by using the tail

biting unit memory (TB-UM) trellis codes at all rates less

than the capacity. It is also true for all rates except for low

rates, in the case when taking into account of the decoding

complexity, even if the decoding complexity of the TB-UM

trellis code is in the cube order of that of the block code.

In this paper, we have discussed on block codes by ap-

plying only the UM trellis codes. The performance of block

codes obtained by original trellis codes, and comparison of

them with the TB-UM trellis codes discussed in this paper

are remained as future works [7].
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Appendix

Appendix A
Followed by (126) of [5], we have

Pr(E) <= qu0k0ρ exp[−u0n0E0(ρ)]

<= exp[−NE(r)]. (A·1)

Appendix B
First, we shall give a complete maximum-likelihood decoding

procedure for the TB-UM trellis code. The over-all decoder con-

sists of qk0 Viterbi decoders called sub-trellis decoders, each of

which starts at the state si, and ends at (the same) state si for

the i-th sub-trellis, where i = 1, 2, · · · , qk0 as shown in Figure

A· 1. Let the code words of the i-th sub-trellis be represented by

xi,j , where j = 1, 2, · · · , q(u0−1)k0 , and the received sequence of

length N = u0n0 be denoted by y ∈ YN , where Y is the channel

output alphabet.

[Decoding Procedure]

(i) Decode y by the i-th Viterbi decoder, and output the decoded

code word x̂i, i.e.,

x̂i = arg max
j=1,2,··· ,q(u0−1)k0

Pr(y|xi,j). (A·2)

(ii) Compute 5)and output the over-all decoded code word x̂, i.e.,

x̂ = arg max
j=1,2,··· ,qk0

Pr(y|x̂i). (A·3)

2

Next, we shall derive the error exponent of the TB-UM trellis

code. Without loss of generality, we let the true path be x∗
1 = 0N ,

i.e., u0n0-tuple of 0s start at s1 (and end at s1) (See Figure A· 1).
Let us define the error event E1, E2, and E3 as follows:

E1: The error event of the 1-st sub-trellis which contains the true

path x∗
1, where the survivors x1,j remerge with x∗

1 until the

u0-th branch level (which does not contain the event of E3).

5）：Note that by (A·3), we can obtain the over-all decoded code word

of maximum-likelihood decoding (MLD) for total qu0k0 code words.

— 5 —



�����

���������	 ��
 � � � �
 ��

Figure A· 1 Trellis diagrams of a TB-UM trellis code (q = 2, k0 =

2).

E2: The error events of the all except for the 1-st (i.e., 2-nd, 3-rd,

· · · , qk0 -th) sub-trellises which do not contain the true path,

and also do not contain the event of E3.
E3: The error event for which the all survivors diverge at the 0-th

branch level, and never remerge with x∗
1 until the u0-th branch

level in the all sub-trellises.

Then the probability of decoding error Pr(E1) for the 1-st sub-

trellis is upper bounded by that for the UM trellis code, since the

latter contains the extra error events which never remerge with

x∗
1 until the u0-th branch level. Then we have

Pr(E1) <= exp[−n0eUM(r)]

= exp[−Nθ0eUM(r)], (A·4)

where an error event begins at any time. While assuming the

(−1)-th branch level (starting at s1 at the (−1)-th branch level),

and shifting the branch level by (−1), we see that the probability

of decoding error Pr(E2) within the sub-trellises starting at si and

ending at si (i |= 1, i = 2, · · · , qk0 ) is bounded by that of Pr(E1).
Next, we intend to derive Pr(E3) by introducing the probability

of list decoding error Pr(L), where an event of list decoding error

L occurs when the true path x∗
1 is not on the over-all output list

x̂i (i = 1, 2, · · · , qk0 ) [2], [4], [13]. If such an event occurs, the

output list never contain the true path i.e., the all decoded out-

puts on the list are in error. The Pr(L) can be derived as follows:

If 6)

Pr(y|x∗
1) <= Pr(y|x̂i), for at least |L| distinct x̂i

(i = 1, 2, · · · , |L|) (A·5)

holds, where we choose the list size |L| = qk0 , then the probability

of list decoding error Pr(L) is given by [2], [4], [13]

Pr(L) <= exp[−NE(r′)], (A·6)

where

r′ = (1/N) ln(M/|L|) = (1− θ0)r, (A·7)

and M = qu0k0 = exp[Nr], and |L| = qk0 = exp[Nθ0r]. Conse-

quently, we have the over-all probability of decoding error Pr(E)

6）：See the following Lemma 4.

is derived as

Pr(E) <= Pr(E1) + Pr(E2) + Pr(E3)
<= 2Pr(E1) + Pr(L)
<= exp{−N [θ0eUM(r)− o(1)]}

+ exp{−NE[(1− θ0)r]}. (A·8)

Ignoring o(1) = ln 2/N → 0 as N → ∞, we have (29).

Finally, we discuss the decoding complexity of the TB-UM trel-

lis code. The number of the states of the single sub-trellis with

the initial state si (i = 1, 2, · · · , qk0 ) is qk0 , and at each state

(node) the Viterbi algorithm compares qk0 survivors. The de-

coder repeats it u0 times where the length of the register is N .

The number of such subtrellises is qk0 . Thus the over-all complex-

ity is uNq3k0 , which leads (30), completing the proof.

［Lemma 4］ Let y be decoded into x̂, and x̂ never merge with

x∗
1 until the u0-th branch level, then we let such y be denoted by

y ∈ Yu0+1. If y ∈ Yu0+1, then there are x̂is which satisfy (A·5).
2

(Proof) Assume the best component code whose average proba-

bility of decoding error pe is least and satisfies [3]

pe = exp{−n0[E(r) + o(1)]}. (A·9)

When y ∈ Yu0+1, the transmitted true path x∗
1 is received as y

such that all the component codes are in error, hence

Pr(y|x∗
1) <= [pe]

u0/[exp(u0n0r)− 1]

<=
exp{−u0n0[E(r) + o(1)]}

exp(u0n0r)− 1
, (A·10)

holds, using the Viterbi algorithm which performs MLD. There

is the MLD path x̂ such that y lies in the decoding region of x̂,

which satisfies

Pr(y|x̂) >= 1− [pe]
u0

>= 1− exp{−u0n0[E(r) + o(1)]}, (A·11)

for some x̂ = x̂i, and for i′ |= i

Pr(y|x̂i′ ) >= (1− exp{−(u0 − 1)n0[E(r) + o(1)]})

·
exp{−n0[E(r) + o(1)]}

exp(n0r)− 1

∼
exp{−n0[E(r) + o(1)]}

exp(n0r)− 1
. (A·12)

Equation (A·10) and (A·12) lead (A·5) for specified y ∈ Yu0+1.

Appendix C
From (22), we have

G(N) ∼ u0Nq2k0 = exp{2N [1 + o(1)]θ0r}, (A·13)

where o(1) = (1/2N) lnu0N → 0 as N → ∞. Then N is repre-

sented by

N ∼ lnG/2θ0r. (A·14)

Substitution of (A·14) into (20) gives (32), where we have used

R = (1 − θ0)r. Similarly, (24) and (26) give (33), and also (28)

and (30) give (34). In above derivations, the all terms o(1) are

ignored, since we are interested only in asymptotics.

Appendix D
From (2) and (3), we have for an ordinary block code

N ∼ lnG/R, (A·15)

Substitution of (A·15) into (2) gives

Pr(E) <∼ G−E(R)/R. (A·16)

If E(R) <= eUM(r)/3 holds, we have

E(R)/R <= eUM(r)/3r. (A·17)

Actually, over VNC, (A·17) holes for rate C/4 <= r = R < C. This

leads Theorem 2.
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