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Abstract Block codes constructed by unit memory trellis codes are discussed from random coding arguments.
There are three methods to obtain block codes from trellis codes, i.e., those of (i) Tail Termination (TT), (ii) Direct
Truncation (DT), and (iii) Tail Biting (TB). In this paper, we discuss exponential error bounds for block codes
constructed by the unit memory (UM) trellis codes based on the above three methods and error exponents for these
codes are derived. For a given branch length, the error exponent of the tail biting unit memory (TB-UM) trellis
codes is shown to be larger than those of the tail termination unit memory (TT-UM) and the direct truncation unit
memory (DT-UM) trellis codes for all rates less than the capacity. Taking into account of the decoding complexity,
the TB-UM trellis codes are also shown to have a smaller upper bound on the probability of decoding error than
the ordinary block codes for the same rate except for low rates with the same decoding complexity.
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1. Introduction

It had been introduced to use unit memory (UM) convolu-
tional codes as a byte oriented code [8]. In early 80’s, bounds
on free distances and error exponents of the UM trellis codes
had been discussed [15]. The UM trellis codes had shown
to have larger error exponents compared to ordinary trellis
codes for low rates. Since we have already obtained powerful
construction methods and efficient decoding algorithms for
block codes, we can effectively use them as component codes
of the UM trellis codes. Therefore, the UM trellis codes have
a property combining the advantages of both block codes and
trellis codes. Note, however, that decoding delay for the UM
trellis codes has a probabilistic value. Hence sometimes, it
is not tolerable to practical applications.

There are three methods to obtain block codes from trel-
lis codes, i.e., those of (i) Tail Termination (TT), (ii) Direct
Truncation (DT), and (iii) Tail Biting (TB). Especially, (iii)
tail biting (TB) trellis codes [10] are known to be one of the
most powerful codes for converting trellis codes into block
codes with no loss in rates. Since the TB trellis codes require
an intolerable increase in the decoding complexity, much ef-
forts have been devoted to the studies on suboptimum de-
coding algorithms [1], [10] or efficient maximum-likelihood
decoding algorithms [11], [14], [16]. Unfortunately, however,
the decoding complexity of the latter algorithms in worst case
are the same as that of the complete maximum-likelihood de-
coding algorithm, although it is asymptotically the same as
that of the Viterbi algorithm when the signal to noise ratio
becomes large [16].

On the other hand, a coding theorem obtained by clas-
sical random coding arguments gives us simple and elegant
results on coding schemes, although it states only an exis-
tence of a code. Random coding arguments can demonstrate
the essential mechanism on coding systems. Since we require
complete maximum-likelihood decoding (MLD), the relation-
ship between the probability of decoding error Pr(€) and the
decoding complexity G(N) at a given rate r, or R, can be
made clear, where N is the code length. It should be noted
that the coding theorem can only suggest the behavior of
the code ensemble, hence it is not useful enough to design a
practical code.

In this paper, we discuss the performance of the block
codes constructed by the UM trellis codes based on the above
three methods, i.e., the Tail Termination UM (TT-UM) trel-
lis codes, the Direct Truncation UM (DT-UM) trellis codes,
and the Tail Biting UM (TB-UM) trellis codes. For a given
branch length, the error exponent of the TB-UM trellis codes
is shown to be larger than those of the TT-UM and the DT-
UM trellis codes for all rates less than the capacity. Taking
into account of the decoding complexity G(N), the former is
also shown to have a smaller upper bound on the Pr(£) than
the ordinary block codes for the same r = R except for low
rates with the same G(N).

Throughout this paper, assuming a discrete memoryless
channel with capacity C, we discuss the lower bounds on the
reliability function E(-) for block codes and e(-) for trellis
codes, and asymptotic decoding complexity G measured by
the computational work [12]. The probability of decoding
error is denoted by Pr(£), the rate, r or R, the code length,

N, and the decoding complexity, G(N).

In section 2, we briefly review on the error exponents of
the block codes and the trellis code as preliminaries. Sec-
tion 3 shows the results of the UM trellis codes [15]. We
derive error exponents and decoding complexity for the TT-
UM trellis codes, the DT-UM trellis codes, and the TB-UM
trellis codes in section 4. Section 5 discusses the results
on the exponential error bounds and asymptotical decoding
complexity. Section 6 is concluding remarks of this paper.

2. Preliminaries

2.1 Block codes

Let an (N, K) block codes over GF(q) be an ordinary block
code of length N, number of information symbols K, and rate
R, where

R=(K/N)lng (K £ N). [nats/symbol] (1)

From random coding arguments for an ordinary block code,
there exists a block code of length N and rate R for which
the probability of decoding error Pr(€) and the decoding
complexity G(N) satisfy

Pr(£) £ exp[-NE(R)] (0£R<(O), (2)

and
G(N) ~ Nexp[NR], 3)
where E(+) is (a lower bound on) the block code exponent [5],
and the symbol ”~” indicates asymptotic equality.
2.2 Trellis codes
Let a (u,v,b) trellis code over GF(q) be a code of branch
length u, branch constraint length v, yielding b channel sym-

bols per branch, and rate r, which satisfies
r=(1/b)Ing. [nats/symbol] (4)

The probability of decoding error Pr(£) and the decoding
complexity G(v) satisfy [5]

Pr(€) £ uK; exp[—vbEy(p)] (0£p<L]) (5)
< exp{—vble(r) —o(1)]} (0<r <), (6)

and
G(v) ~u’q”, (7)

where K is a constant independent of v, 0(1) — 0 (v — 00),
and e(-) is (a lower bound on) the trellis code exponent [5]
given by

e(r) = {Eo(l)

Eo(pr)

0 g r g Rcomp
Rcomp <r= EO(pr)/pr < 07
where FEy(p) is the Gallager’s function, and Rcomp = Eo(1)

is the computational cut-off rate of the channel. Note that
the following relation holds between E(R) and e(r):

B(R) = max (1= pe(R/p). (9)

which is called the concatenation construction [5]. Similarly,
letting
0=v/u, (10)

the following equation also holds [5]:

1) : This paper describes the detailed derivations or the proof of [6].
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e(r) = min (1/6)E[(1 ~ )], (11)
which is called the inverse concatenation construction [5].
The block code exponent E(R), and the trellis code expo-
nent e(r) are shown in Figure 1 for a very noisy channel.

3. Unit memory (UM) trellis codes

For the (u,v,b) conventional trellis code discussed in the
previous section, letting v = 1 and introducing an (ng, ko)
block code to each branch as a component code, we have
a (u,no, ko) unit memory (UM) trellis code. Note that we
let ng — oo for the UM trellis codes, while v — oo for the
conventional trellis codes.

Let a (u, no, ko) unit memory (UM) trellis code over GF'(q)
be a code of branch length u, length of component code no,
number of information symbols of component code ko, and
rate r, which satisfies

r = (ko/no)Ingq. [nats/symbol] (12)

[Lemma 1] (Thommesen & Justesen [15]) There exists a
(u, no, ko) unit memory (UM) trellis code for which the prob-
ability of decoding error Pr(€) and the decoding complexity

G(no) satisfy

Pr(&) < exp[—noeum(r)] (07 < O), (13)
and ?
G(no) ~ u*nog®™® = u’ng exp[2nor], (14)
where
2E(r/2 <7 < Reom
eom(r) = {e(rg . E(l)%c_omp;]j < 2)» 1)
holds. m|

We then easily have [15]

eum(r) =2E(r/2) > e(r) (0 <7 < Rcomp)- (16)

4. Block codes constructed by unit mem-
ory (UM) trellis codes

Let us consider a (u, no, ko) unit memory (UM) trellis code,
and we let this code be converted to a block code by using the
methods described above. Since we shall compare the con-
ventional (N, K) block code to the block codes constructed
by the UM trellis codes, the code length N is chosen as:

N = Uuono, (17)

denoting
05600 =1/up £1/2, (18)
where ug is the branch length and is an integer such that
U = 2, 3, .
4.1 Tail termination unit memory (TT-UM) trel-
lis codes
Letting a (u, no, ko) unit memory code be terminated at

2) : The number of the states of the Viterbi decoder is qu, and at
each state it compares ¢*0 survivors. The decoder repeats it u times,
where the length of the register is ung. Then the over-all decoding

complexity of the UM trellis code is given by (14).

branch wug, we have a (uog, no, ko) tail termination unit mem-
ory (TT-UM) trellis code over GF(q) of length N = wono,
and rate R. We then easily have the following lemma [5],
where actual rate R = (1 — 6o)r, and r = (ko/no) Ing.

[Lemma 2] The probability of decoding error Pr(€) and
the decoding complexity G(N) for the TT-UM trellis code
are given by

Pr(€) L exp[-NErr.um(R)] (0L R< (), (19)

where
Err.um(R) = E(R), (20)
E(R) = Ooevm[R/(1 —00)] (6o = 1/uo,uo =2,3,4,---),
(21)
and
G(N) ~ ugNg** = ugN exp[2N6or]. (22)
O

If 0o takes real values, then (21) gives E(R) by the con-
catenation construction [5] of (9) replaced by v = 1 — 6o.
However, 0y = 1/ug,uo = 2,3,4,---, the rhs of (21) is con-
sisted by the set of straight lines for discrete values of 0.
Hence the following relation holds:

E(R) £ E(R), (23)

where the lhs of (23) are given by the set of tangent lines to
E(R) which is the upper envelop of the straight lines.

4.2 Direct truncation unit memory (DT-UM)

trellis codes

Similarly, truncation at branch wo of a (u,no, ko) unit
memory trellis code gives a (uo,no, ko) direct truncation
unit memory (DT-UM) trellis code over GF(q) of length
N = upno, and rate r. We then have the following lemma,
where there is no loss in rate.

[Lemma 3] For the DT-UM trellis code, Pr(£), and G(N)
are given by

Pr(£) £ exp[-Nepr.um(r)] (0= r < C), (24)
where
Epr.um(r) = E(r), (25)
and
G(N) ~ ugNg**® = ugN exp[2N6or], (26)
where N = uono, and r = (ko/no)Ingq. O

(Proof) See Appendix A.

4.3 Tail biting unit memory (TB-UM) trellis

codes

Again consider a (u, 1o, ko) unit memory (UM) trellis code,
and we let this code be converted to a block code by using
tail biting techniques.

Let w € X“0*0 be a message sequence of (branch) length
uo, where X is the channel input alphabet. Each node is
composed of an (no, ko) block component code and rewrite
w as

w = (Wi, w2, , Wyg)- (27)



[Encoding Procedure]

(i) Initialize the encoder by inputting the last ko informa-
tion (branch) symbols w.,, of ugko information (branch)
symbols w, and disregard the output of the encoder.

(ii) Input all uoko information symbols w into the encoder,
and output the codeword & € X” of length N = uono in

channel symbols, where rate r = (ko/no) Ing. o

The resultant code is a (uo, no, ko) tail biting unit memory
(TB-UM) trellis code, and the rate of this code is the same
as that of the UM trellis code. Hence there is no loss in rate,
in contrast to the TT-UM trellis code whose rate reduces to
R = (1 — 00)7’.

[Theorem 1] There exists a (uo,no,ko) tail biting unit
memory (TB-UM) trellis code for which the probability of
decoding error Pr(€) and the decoding complexity G(N) sat-

isfy
Pr(€) £ exp[-NEr.uMm(r)] (0=7r < C), (28)
where
Erpum(r) = 90:1/%%1(]11:2’3‘4“” {6oeum(r), E[(1 — 6o)r]},
(29)
and
G(N) ~ ugN¢**® = ugN exp[3Nbor], (30)
where N = ugng and r = (ko/no) Ingq. O

(Proof) See Appendix B?®)

5. Discussions

5.1 Exponential error bounds

We have derived error exponents as given by (20), (25),
and (29) for the TT-UM, the DT-UM, and the BT-UM trellis
codes, respectively. As the summary, we have the following
corollary from (23).

[Corollary 1] For the same rate r = R, and a given 6
(0 £ 00 £1/2), the following relation holds:

Err.um(R) £ Epr.um(r) £ Ersoom(r). (31)

O
Finally, we give computational results for a very noisy
channel.
[Example 1] Over a very noisy channel (VNC), the er-
ror exponent Erp.um(r) for the TB-UM trellis codes is de-
picted in Figure 1 together with that Err.um(R) for the
TT-UM trellis code. As stated in Corollary 1, for a given
uo, Err-um(R) £ Ers-um(r) holds for all rates » = R. Since
0o =1/2,1/3,---, Err.um(R) is given by the set of straight
lines, and it is close to the curve E(R) as its tangent lines,
hence Err-um(R) £ E(R) always holds. Note that by the
result of numerical computation, the second term of the rhs
of (29) does not affect Erp.um(r) for all rates over the VNC.
O

r/C, R/C

Figure 1 Error exponents for a very noisy channel
(060 £1/2).

5.2 Asymptotic decoding complexity

Using (22), (26), and (30), we shall discuss the decoding
complexity of the block codes constructed by the UM trellis
code based on the three methods. The probability of decod-
ing error Pr(€) can be rewritten in terms of the decoding
complexity G as shown in the following.

[Corollary 2] The following inequalities hold for a given 6
(0£6p £1/2):
For the TT-UM trellis codes

_(A-0g)E(R)
Pr(e) < G R (32)
for the DT-UM trellis codes
_EWR)
Pr(§) < G~ 20r, (33)
and for the TB-UM trellis codes
e (r)
Pr(€) <G~ . (34)
O

(Proof) See Appendix C.

Comparing the ordinary block code and the TB-UM trellis
code, we have the following interesting theorem.

[Theorem 2] For the same decoding complexity G(N) and
the same rate r = R, for all rates except for low rates, the
upper bound on the probability of decoding error Pr(€) for
the TB-UM trellis code is asymptotically smaller than that
for the ordinary block code. o
(Proof) See Appendix D.

This theorem suggests us that we can attain smaller Pr(£)
for the TB-UM trellis code than that for the block code, for
all rates except for low rates®), although the decoding com-
plexity G of the former grows exponentially with 3N, while
that of the latter, with only N. Note that, however, the
Pr(€) decreases only algebraically with G.

3) : To prove Theorem 1, a decoding procedure is stated also in Ap-

pendix B.

4) : Over VNC, it is valid for C/4 £ r = R < C, which is also true for
tail biting trellis codes [7].



6. Concluding remarks

We have shown that the upper bound on the probability of
decoding error of the block code is improved by using the tail
biting unit memory (TB-UM) trellis codes at all rates less
than the capacity. It is also true for all rates except for low
rates, in the case when taking into account of the decoding
complexity, even if the decoding complexity of the TB-UM
trellis code is in the cube order of that of the block code.

In this paper, we have discussed on block codes by ap-
plying only the UM trellis codes. The performance of block
codes obtained by original trellis codes, and comparison of
them with the TB-UM trellis codes discussed in this paper
are remained as future works [7].
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Appendix

Appendix A
Followed by (126) of [5], we have

Pr(€) £ qvokor exp[—uonoEo(p)]

< exp[-NE(r)]. (A1)

Appendix B

First, we shall give a complete maximum-likelihood decoding
procedure for the TB-UM trellis code. The over-all decoder con-
sists of g¥0 Viterbi decoders called sub-trellis decoders, each of
which starts at the state s;, and ends at (the same) state s; for
the i-th sub-trellis, where ¢ = 1,2,---,¢*0 as shown in Figure
A-1. Let the code words of the i-th sub-trellis be represented by
x; j, where j = 1,2,--- ,q("0_1>k0, and the received sequence of
length N = upno be denoted by y € )/N, where ) is the channel
output alphabet.

[Decoding Procedure]

(i) Decode y by the i-th Viterbi decoder, and output the decoded

code word &;, i.e.,

&; = arg max (A-2)

Pr(y|x; ;).
j=1,2,--- ,q(vo=Dko ( | ZJ)

(ii) Compute ® and output the over-all decoded code word &, i.e.,

T = arg max

Pr(yl;).
3=1,2,-- ,q"0

(A-3)

O

Next, we shall derive the error exponent of the TB-UM trellis
code. Without loss of generality, we let the true path be &7 = o,
i.e., ugno-tuple of Os start at s1 (and end at s1) (See Figure A-1).

Let us define the error event £1, &2, and &3 as follows:

&1: The error event of the 1-st sub-trellis which contains the true
path x], where the survivors 1 ; remerge with x] until the

ug-th branch level (which does not contain the event of £3).

5) : Note that by (A-3), we can obtain the over-all decoded code word

of maximum-likelihood decoding (MLD) for total ¢“0%0 code words.

— 5 —



branch level 0 true path uo
51 : S1 <
" s
&
\quo """""" - quo

Figure A-1 Trellis diagrams of a TB-UM trellis code (¢ = 2, ko =
2).

E3: The error events of the all except for the 1-st (i.e., 2-nd, 3-rd,
s qko-th) sub-trellises which do not contain the true path,

and also do not contain the event of £3.
E3: The error event for which the all survivors diverge at the 0-th
branch level, and never remerge with x] until the up-th branch

level in the all sub-trellises.

Then the probability of decoding error Pr(€;1) for the 1-st sub-
trellis is upper bounded by that for the UM trellis code, since the
latter contains the extra error events which never remerge with
] until the up-th branch level. Then we have

Pr(&1) < exp[—noeum(r)]

= exp[—Nboeum(r)], (A-4)

where an error event begins at any time. While assuming the
(—1)-th branch level (starting at s1 at the (—1)-th branch level),
and shifting the branch level by (—1), we see that the probability
of decoding error Pr(€2) within the sub-trellises starting at s; and
ending at s; (i 4 1,i=2,---,¢"0) is bounded by that of Pr(&1).
Next, we intend to derive Pr(€3) by introducing the probability
of list decoding error Pr(L), where an event of list decoding error
L occurs when the true path a7 is not on the over-all output list
&; (i =1,2,---,¢") [2], [4], [13]. If such an event occurs, the
output list never contain the true path i.e., the all decoded out-
puts on the list are in error. The Pr(L£) can be derived as follows:

If®
Pr(y|z]) < Pr(y|@;), for at least |£]| distinct &;
(i=1,2,---,[L]) (A'5)

holds, where we choose the list size |£| = ¢*0, then the probability
of list decoding error Pr(L) is given by [2], [4], [13]

Pr(C) < exp[-NE(+")], (A6)
where

' = (1/N)In(M/|L]) = (1 — 6o)r, (A7)

and M = qu0k0 = exp[N7], and |£| = ¢¥0 = exp[Nfgr]. Conse-
quently, we have the over-all probability of decoding error Pr(£)

6) : See the following Lemma 4.

is derived as
Pr(€) < Pr(&1) + Pr(€2) + Pr(&s)
< 2Pr(&1) + Pr(L)
< exp{—N[boeum(r) — o(1)]}
+ exp{—NE[(1 — 60o)r]}.

Ignoring o(1) =In2/N — 0 as N — oo, we have (29).

Finally, we discuss the decoding complexity of the TB-UM trel-
lis code. The number of the states of the single sub-trellis with
the initial state s; (i = 1,2,---,¢"0) is ¢*0, and at each state
(node) the Viterbi algorithm compares ¢*0 survivors. The de-
coder repeats it ug times where the length of the register is N.
The number of such subtrellises is ¢*0. Thus the over-all complex-
ity is ulNg3*0, which leads (30), completing the proof.

(A)

[Lemma 4] Let y be decoded into &, and & never merge with
] until the up-th branch level, then we let such y be denoted by
Y € Yyo+1. If y € Yyy41, then there are &;s which satisfy (A-5).
[m]

(Proof) Assume the best component code whose average proba-
bility of decoding error pe is least and satisfies [3]

pe = exp{—no[E(r) + o(1)]}.

When y € Yy,+1, the transmitted true path x] is received as y
such that all the component codes are in error, hence

Pr(ylzy) < [pe]“?/[exp(uonor) — 1]

exp{—ugno[E(r) + o(1)]}
exp(ugnor) — 1 ’

(A-9)

< (A-10)

holds, using the Viterbi algorithm which performs MLD. There
is the MLD path & such that y lies in the decoding region of &,
which satisfies

Pr(y|z) = 1 — [pe]“°
= 1 — exp{—uono[E(r) + o(1)]}, (A-11)
for some & = &;, and for ¢’ £ 1
Pr(y|z;) 2 (1 — exp{—(uo — Dno[E(r) + o(1)]})
~exp{—no[E(r) + o(1)]}
exp(nor) — 1
- exp{=no[E(r) + o(1)]}
exp(nor) — 1
Equation (A-10) and (A-12) lead (A-5) for specified y € Yyo41-
Appendix C

From (22), we have
G(N) ~ ugNg?k0 = exp{2N[1 + o(1)]6o7}, (A-13)

where o(1) = (1/2N)InuoN — 0 as N — oco. Then N is repre-
sented by

(A-12)

N ~ 1InG/26pr. (A-14)

Substitution of (A-14) into (20) gives (32), where we have used
R = (1 — 0g)r. Similarly, (24) and (26) give (33), and also (28)
and (30) give (34). In above derivations, the all terms o(1) are
ignored, since we are interested only in asymptotics.

Appendix D

From (2) and (3), we have for an ordinary block code

N ~InG/R, (A-15)

Substitution of (A-15) into (2) gives
Pr(§) < GTER/ER, (A-16)

If E(R) < eym(r)/3 holds, we have
E(R)/R < eumi(r)/3r (A-17)

Actually, over VNC, (A-17) holes for rate C/4 < r = R < C. This
leads Theorem 2.



