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ABSTRACT

Performance of Multi-level classification systems constituted by a plural number of binary
classifiers usually called ECOC (Error Correcting Output Codes) is discussed and evaluated,
assuming the M-dimensional Normal Distribution for a classification data model with M (= 3)
categories. First, based on this artificial model, the relationship between the number of binary
classifiers N and the classification error probability P is investigated, and easily found it to
be in trade-offs. Starting with the exhaustive codes of code length Nmax=2M"1-1, we clarify the
performance of shortened version of the exhaustive codes of length N (< Nmax). Here, the
average performance for Pe is discussed, and note that it is not the object of this study to
obtain the construction method of the ECOC which minimizes Pe. Next, we regard the two
variables, N and P. which are in a trade-off relationship, N as the investment cost and Pe as
the performance degradation, and normalize both of them with their maximum values. That is,
we let n=N/Nmax, and pe=Pe/Pemax, where Pemax is the value of P. when N=M—1. Letting the
number of categories M as a parameter which gives the scale of the system, we apply them to
the system evaluation model in the OR fields. As the result, the system trade-off functions
between n and p. are shown to have desirable properties, such as "Flexible" and “Elastic”.
Here, “Flexible” means that the system has a downward convex and decreasing function,
hence this suggests that we can decrease the investment cost drastically with tolerating a
slight increase in the performance degradation. While “Elastic” implies that the system has a
function which approaches to origin as M becomes large. Hence the ECOC has desirable
condition as the number of categories M becomes large. Note that these results are similarly
obtained when applied to real data such as document classification and hand-written character
recognition tasks.

Keywords: Multi-level classification, Binary classifier, Trade-off model, System evaluation
model, ECOC, Exhaustive code, Error correcting codes, Artificial data model
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1. INTRODUCTION

In the field of machine learning, there are many multi-level classification (multi-
class) problems such as the document classification [19], and the hand-written character
recognition [17]. Although there is a method for directly solving the multi-class problems
using a single multi-level classifier, it is generally not practical because of computational
complexity. In the present study, we consider the multi-class problems using multiple binary
classifiers which has been known and studied as the ECOC (Error Correcting Output Codes)
[1][2][5][14]. We use SVMs (Support Vector Machines) and the RVMs (Relevance Vector
Machines) which are known to perform well as binary classifiers.

On the other hand, J. Pearl and A. Crolotte discussed the trade-off between the
amount of memory and the error in QA (Question Answering) systems based on rate-
distortion theory [15]. They clarified the conditions such that we can reduce the large amount
of memory, if the small error rate can be tolerated. They introduced desirable conditions for
systems such as “Flexible" and “Elastic". In our previous work, we have applied this
theoretical model to various tasks [11]. However, it imposes some strong restrictions to target
information systems, since the model is based on rate-distortion theory. Subsequently we
successfully removed these restrictions and also extended the desirable conditions to make
them useful by generalized trade-off model used for system evaluation [7][8], which is a kind
of the trade-off model as seen in the OR (Operations Research) area. It would be useful for
evaluation of information systems prior to start researching, developing, or designing them.

In this paper, we apply the trade-off model for system evaluation to construction
methods of the multi-class systems using binary classifiers, assuming the data be generated by
artificial model [3][4][16][18]. We discuss on the trade-off between the number of binary
classifiers (investment cost) N and the probability of classification error (performance
degradation) P . of the multi-class system configuration with the number of categories (scale
of the system) M as a parameter. Then we investigate whether the systems satisfy desirable
conditions or not as M increases. It should be noted that minimizing the probability of
classification error [13] is not the objective of this study.

Throughout this paper, we shall evaluate the average performance of the construction
methods which solve the multi-class problems using binary classifiers. In section 2, we briefly
describe the configuration methods. Section 3 shows the construction methods of the code
word table. Experiments and discussions are described in sections 4 and 5, respectively.
Finally section 6 gives concluding remarks. The trade-off model for system evaluation called
the system evaluation model is summarized in Appendix A.

2. MULTI-LEVEL CLASSIFICATION SYSTEM USING BINARY
CLASSIFIERS

The main part of the configuration for the multi-level classification system using
binary classifiers is usually called the ECOC Matrix [12], the classifier structure, the code
word structure, the coding matrix and so on. Here we call it a code word table.

2.1. Multi-class System Configuration

The multi-class system configuration using binary classifiers is shown in Figure 1.
The main part of this configuration is the code word table. The rest of it is the binary classifier.
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Figure 1. Multi-class system configuration using binary classiers.

2.2. Code Word Table
The code word table shown in Figure 2 is represented by the matrix as follows:

W:[WU] (Wl]E{Oa 1}’ lzla 2’ '“9M9 ,]:1’ 29“.9N)
= [lel,dZT, XN dNT]

= [cl, 2,0, CM]T (l)

where T represents the transpose of a matrix (or a vector).
[Example 1] Table 1 shows the case where M =5, N =5, which is called “one vs. the
rest" method and it is one of basic types of the code word table.

Table 1. Example of code word table of “one vs. the rest" method
(M=5,N=5,D=2).

cCl1]olofo]o
c,lol1]lofo]o
C.J0]o0]l1]0]o0
c,lololol[1]o0
ccloJoJo]o]1

2.3. Binary Classifier

For learning from the examples, the training data x's are given in the form of (x; Ci),
where Ci € C represents the i-th category and C is a set of categories. Using the function
AU+ ) learned from the training data, the test data (whose category is unknown) y is classified
into Ci estimated by f(y) = Ci* € C, where

S (y) = arg max gi (y). (2)
cecC

The j-th binary classifier d; of the maximum margin soft decision SVM[1][6] outputs hi(y)
(—©0,+0) to calculate gi(y) =2 I (wij) hj(y), where I (wi)) takes 1 for wi;; = 1, and —1 for wi;

=0.

2.4. System Evaluation Model
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The object system modeled in subsection 2.1 is applied to the trade-off model
described in Appendix A. Experimental data are fed into the part of the multi-class system
configuration, and the probability of classification error P. is obtained as the performance
degradation of the system for the number of binary classifiers N as a variable. Here, the
complexity of the problem, that is, the scale of the system is given by the number of
categories M to be classified. Table 2 shows the correspondence between variables and
parameters of rate-distortion theory, those of the trade-off model for system evaluation, and
those of the object system i.e., the multi-class system.

Table 2. Evaluation of Mul ti-class System (Correspondence Table) '

‘ Rate-Distortion Theory | Trade-off Model ’ Multi-clags Systemn ‘
Rate (L) Livestment Cost (£) Number of Binary Classifiers (n)
Distortion (1) Performance Degradation (d) | Probability of Classification Error (p.)

Scale of System (G} Number of Categories (A1)

3. CONSTRUCTION OF CODE WORD TABLE
In this section, construction methods for code word table are discussed.

3.1 Generation of Exhaustive Codes
One of the most important code word table is given by the exhaustive code [5]. The
code word table of the exhaustive code is generated by
(1) choose all the column vectors of length M,
(i1) remove the complement column vectors from them, and after that,
(iii) remove the all 1 (or all 0) column vector.
Consequently, the length of the (full) exhaustive code is given by:

Nmax:2M71 —1. (3)

[Example 2] An example of the exhaustive code with M =5, and N max = 15 is shown
in Table 3.

Table 3. Exhaustive code (M =5, and N ,,,, = 15)

dy |dy |ds|dy|ds |dg|dy|dg|dg|dig]|dig|dip|diz|dis]|dss
c,|1r|vrp1r (1111111 1 1 1 1 1
| 0jO0O|OlO[O]O|O]O]1]|1 1 1 1 1 1
c;|0O{O0OjO]O[ T 1T |1 |1]0|O 0 0 1 1 1
C,)]ojoj1rf1rjyojof1y1rjo0fo 1 1 0 0 1
Cz| 0|1 (0|1 (O[T ][O 1]O0]|1 0 1 0 1 0

3.2 Construction of Shortened Exhaustive Codes
As is implied by the name, the exhaustive code extracts column vectors exhaustively.

!'In the following sections, unlike Figure A.1, the horizontal axis is used for n, and the vertical axis, for p ..

Since the code length of the (full) exhaustive code is given by the Eq. (3), let us consider a
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shortened version of exhaustive code of length N with NV min < N < N max, where, N mn =M —1,
i.e. , length of the “modified one vs. the rest” method 2. Then we can decrease the investment

cost (decreasing the number of binary classifiers) N by tolerating the performance degradation
(increasing the probability of classification error) P .. For given M categories, we shall
evaluate the relationships between the number of binary classifiers N and the average
probability of classification error P., where P . corresponding to N column vectors selected
from the N max column vectors is obtained and is averaged over N column combinations out of
all N maxcolumns 3. The obtained results are normalized by N max and P max, and we have the
normalized function with n=N/N max,pe=Pe /P ¢ max:

pe=s(n M) 4

where P ¢ max corresponds to the value of P. for N=Nmn =M —1.

4 EXPERIMENTS
Let us obtain and show the Eq. (4) defined in the previous section by experiments.

4.1 Artificial Data Generation
Consider the M-dimensional Normal Distribution N(z , X ) whose probability density

function g(z) is given by
1 1 1 Te—1
9@) = s -2 - p Iz —p ) ®)

where p = (p1, 2, * * *,um)T and2=[o0] (i,j = 1,2, + = +, M). Assuming learning
data x, and test data y be generated by M-dimensional Normal Distribution, that is x, y ~
N, 3).

4.2 Experiments by Artificial Data
By using random number generator with AM-dimensional normal distribution,
specification of learning data x and y are given as shown in Table 3.

Table 4. The number of experimental data

Number of categories M 4,5,6,7,8
Number of learning data/category 100
Number of test data/category 100
Number of trials 20

[Experiment 1] Isotropic synthetic data generation with no correlation for M=8
As the most ideal and simple case, we choose pni=1,i=1,2,+ *+ *+, M, 0:;=0.5, and

2 For the purpose of comparison, we use “modified one vs. the rest” method by removing the column vector
(0,0, - « +,0 DTof “one vs. the rest” method as shown in Table 1.

3 It is equivalent to randomly choose N columns among the all N ,,, columns with the uniform probability

distribution.
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0i;=0 (for all i#j), i,j=1,2,+ + +, M, ie., with no correlation. The result obtained is
depicted in Figure 2 together with the results obtained by real data (document classification
data [19])*. This figure shows the relationship between the average probability of
classification error P . and the number of the binary classifiers N for M=8, and N max=127,
where the N columns are randomly chosen from Nmaxcolumns, and each dot indicates a result
obtained by an N combination of N max column vectors. A set of dots is illustrated as if it were
a heavy vertical line.
[Experiment 2] Isotropic synthetic data generation with correlation for M=8

For the same conditions as experiment 1 except for o ;=0.125 (for all i#j) , i.e., the
coefficient of correlation is 0.5, the result obtained is also shown in Figure 2.

07" = Real data [19]
4 Covariance=0.125
Covariance={

SR
5,
¥

=

87 107 127

Figure2. The relationship between the probability of classification error P, and the number of
binary classifiers NV (M=8)

[Experiment 3] Comparison with the minimum distance classification method
In experiment 1 and 2, we have used the SVM as a binary classifier. If we use the minimum
distance classification (MDC) method instead of the SVM, the probability of classification
error P. would become large. The result is illustrated in Figure 3 forp = 1,i=1,2,+ =« -,

M, 0ii=0.5,and o ; ;=0 (for all i #j),i,j=1,2, « -, M,1ie., with no correlation.

Figure 3. The relationship between the probability of classification error P, and the number of
binary classifiers /Vto compare the case of using the minimum distance classification (MDC)
method (M=8)

4 The result for real data set [19] is copied from Figure 5.1 in [9]
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5 DISCUSSIONS
5.1. The relationship between P, and N

The relationship between the probability of classification error P. and the number of
binary classifiers N is shown to be in trade-offs as Figure 2 and Figure 3.

[Remark 1] From Figure 2, we have:

* The case o ;;=0.125(for all i#j) increases the probability of classification error P .
compared to the case ;=0 (for all i %) with the same o;;=1.0 for the Isotropic synthetic
data.

* For the case of actual data set, the result for a set of N combination among N max columns
varies widely 3 as seen in the heavy vertical lines in Figure 3,

[Remark 2] From Figure 3, we have:

* Compared to the minimum distance classification (MDC) method for binary classifiers, the
SVM classifier for them performs better, since the probability of classification error P. by
the latter is lower than that by the former.

5.2. The relationship between p. and n

The trade-off curves which corresponds to the Eq. (4) obtained by these experiments
are shown in Figure 4 and Figure 5. Figure 4 shows the trade-off curves for the case of M = 4,
5,6,7, and 8, whenu=1,i=1,2,* * *, M,0::=0.5, and o ;;=0 (for all iF)), i, j = 1,
2, + +, M, ie., with no correlation. While figure 5 shows those for the same conditions
except for using the minimum distance classification (MDC) method instead of the SVM.

Applying the target system ie., multi-classification system constructed by binary
classifiers (ECOC) to the system evaluation model described in Appendix A, we shall find the
following interesting properties.

Figure4. Trade-off relationship between investment cost# and performance degradationp .
with system scale parameter M for p~1,i=1,2, * + - ,M,and o;;=0.5, 6;;=0 (i%)).

[Remark 3] From Figure 4, we have:
* The trade-off curves are decreasing and convex downward, hence are shown to be flexible.
* Most of the trade-off curves go toward the origin as M becomes large except in the

neighborhood of n = 1, and are almost elastic.

> Actual data may be generally not isotropic

118



ISSN 2411-9318 ICETA June 25-27, 2018, Taipei, Taiwan

[Remark 4] From Figure 5, we have:
* For the case of using the minimum distance classification (MDC) method instead of the
SVM, the similar properties to Remark 3 holds, hence the system has also flexible and
elastic.

e

Figure5. Trade-off relationship between investment cost# and performance degradationp .
with system scale parameter M to compare the case of using the minimum distance classification
(MDC) method for x =1,i=1,2,+ + * ,M,and o ;;=0.5, 0 ;;=0 (iF)).

6 CONCLUDING REMARKS

In this paper, we investigated the method for constructing multi-class systems using
binary classifiers (the main part is called the ECOC), assuming the data be generated by
artificial model. First, we clarify the relationship between the probability of classification
error P . and the number of binary classifiers N is in trade-offs by experiments. Next, the
trade-off model used for system evaluation is applied to this result, and we evaluated the
ECOC systems in terms of the trade-off relationship between the investment cost n and the
performance degradation p.. Our trade-off results show that they have desirable properties
such as flexible and elastic when increasing the scale of the system M. Our main findings are
highlighted as Remarks 1 to 4.

Although we have conducted empirical evaluations using artificial data for only
isotropic conditions this time, it is also necessary to investigate in details for different values
of pand X, and to clarify the analytical performance evaluation of the ECOC. In the future,
we would like to discuss the case where the fruits of coding theory are effectively introduced,
especially we expect that the modified Reed-Muller (mRM) codes [6] would play an
important role in this area.

APPENDIX

Appendix A: System Evaluation Model
Introducing rate-distortion theory, we briefly describe the trade-off model for system
evaluation called (a generalized version of) system evaluation model [7][8].

A.1. Outline of Rate-Distortion Theory
Rate-distortion theory discusses data compression by the trade-off property between

rate and distortion [15]. The rate-distortion function can be written as:

L=R (D) (A.1)
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where L is the rate defined by L = (1/n) log |C|, where |C| is the number of code words, 7, the
code length, and D, the distortion. The L = R (D) is usually a convex downward and non-
increasing function of D.

A.2. Trade-off model for system evaluation

Generally, the rate L discussed in the previous subsection corresponds to the
investment cost of a system, and distortion D, the performance degradation of the system [15].
By extending the rate-distortion model, we have proposed the trade-off model for system
evaluation [7][8], where we have also introduced a parameter G as the scale of the system.

Let the rate L be normalized by the maximum of L, L max, and the distortion D, by the
maximum of D, D max, then we have the following normalized function by £ = L/L max, and d =
D/D max, and introducing G:

¢=r(d;G) (A.2)

For evaluation of the systems, we define the following properties to the normalized trade-off
system evaluation function (A.2):

[Definition A.1]

(1) Flexible [15]: The system is “flexible", if £ = r (d;G) is a decreasing and convex
downward function. And the system A with £ = ra (d;G) is more flexible than the system B
with € = re (d;G), if ra (d;G) < re(d;G) for arbitrary d (0 < d < 1), and G (G > 1). (See
Figure A.1).

(2) Elastic [15]: The system with £ = r (d;G) is elastic, if £ =r (d;G) is a decreasing function
of G for arbitrary d (0 < d < 1). (See Figure A.1).

(3) Effective elastic [7]: The system is effective elastic, if the system is elastic and € = r (d;G)
is a convex downward function of G.

£

t=r(d; G,

d
Figure A.1. Trade-off model.

As shown in Figure A.1, ¢ is a decreasing and convex downward function of d, hence we can
decrease ¢ drastically tolerating a slight increase in d.
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