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Abstract—Performance of block codes constructed by unit
memory (UM) trellis codes is discussed from random coding
arguments. There are three methods to obtain block codes from
trellis codes, i.e., those of (a) Tail Termination (TT), (b) Direct
Truncation (DT), and (c) Tail Biting (TB). In this paper, we
derive exponential error bounds and decoding complexity for
block codes constructed by the UM trellis codes of branch length
two based on the above three methods to uniformly discuss their
performance. For the UM trellis codes of branch length two, the
error exponent of the tail biting unit memory (TB-UM) trellis
codes is shown to be larger than or equal to those of the ordinary
block codes, the tail termination unit memory (TT-UM) and the
direct truncation unit memory (DT-UM) trellis codes for all rates
less than the capacity. Decoding complexity for the TB-UM trellis
codes of branch length two exhibits interesting property since
their trellis diagrams become simple. Taking into account of the
asymptotic decoding complexity, the TB-UM trellis codes are
also shown to have a smaller upper bound on the probability
of decoding error compared to the ordinary block codes for the
same rate with the same decoding complexity.

I. INTRODUCTION

It had been introduced to use unit memory (UM) convolu-
tional codes as a byte oriented code [8]. In early 80’s, bounds
on free distances and error exponents of the UM trellis codes
had been discussed in detail [15]. The UM trellis codes had
shown to have larger error exponents compared to ordinary
trellis codes especially for low rates. Since we have already
obtained powerful construction methods and efficient decoding
algorithms for block codes, we can effectively use them as
component codes of the UM trellis codes. Therefore, the UM
trellis codes have a property combining the advantages of both
block codes and trellis codes. Note, however, that decoding
delay for the UM trellis codes takes on a probabilistic value.
Hence sometimes, it is not tolerable for practical applications.

There are three methods to obtain block codes from trellis
codes, i.e., those of (a) Tail Termination (TT), (b) Direct
Truncation (DT), and (c) Tail Biting (TB). Especially, (c) TB
trellis codes [10] are known to be one of the most powerful
codes for converting trellis codes to block codes with no
loss in rates. Since the TB trellis codes require an intolerable
increase in the decoding complexity, much efforts have been
devoted to the studies on suboptimum decoding algorithms
[1],[10] or efficient maximum-likelihood decoding algorithms
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[11],[14],[16]. Unfortunately, however, the decoding complex-
ity of the latter algorithms in worst case is the same as that of
the complete maximum-likelihood decoding algorithm [16].

On the other hand, a coding theorem obtained by classical
random coding arguments gives us simple and elegant results
on coding schemes, although it states only an existence
of a code. Random coding arguments can demonstrate the
essential mechanism on coding systems. Since we require
complete maximum-likelihood decoding (MLD), the relation-
ship between the probability of decoding error Pr(E) and the
decoding complexity G(N) at a given rate r, or R, can be
made clear, where N is the code length. It should be noted that
the coding theorem can only suggest the behavior of the code
ensemble, hence it is not useful enough to design a practical
code.

In this paper, we propose a new block code which is
constructed by the unit memory trellis code of branch length
two by using the tail biting technique. First we discuss
the performance of the block codes constructed by the UM
trellis codes based on the above three methods, i.e., the Tail
Termination UM (TT-UM) trellis codes, the Direct Truncation
UM (DT-UM) trellis codes, and the Tail Biting UM (TB-UM)
trellis codes. We have shown that for a given branch length u0

(u0 = 2, 3, · · · ), the error exponent of the TB-UM trellis codes
is shown to be larger than those of the TT-UM and the DT-UM
trellis codes for all rates less than the capacity [6]. Taking into
account of the decoding complexity G(N), the former is also
shown to have a smaller upper bound on the Pr(E) than the
ordinary block codes for the same r = R except for low rates
with the same G(N). Especially, this paper discusses for the
cases of branch length two (u0 = 2 in [6]), the TB-UM trellis
codes performs well compared to the ordinary block codes,
the TT-UM trellis coeds and DT-UM trellis codes from the
view-point of the upper bound on the probability of decoding
error for the same r = R and the same G(N).

Throughout this paper, assuming a discrete memoryless
channel with capacity C, we discuss the lower bounds on
the reliability function E(·) for block codes and e(·) for
trellis codes, and the decoding complexity G measured by the
computational work [12]. The probability of decoding error is
denoted by Pr(E), the rate, r or R, the code length, N , and
the decoding complexity, G(N).



In Section II, we briefly review on the error exponents of
the block codes and the trellis code as preliminaries. Section
III describes the results of the UM trellis codes [15]. We
derive error exponents and decoding complexity for the TT-
UM trellis codes, the DT-UM trellis codes, and the TB-UM
trellis codes in Section IV. Section V discusses the results
on the exponential error bounds and the asymptotic decoding
complexity. Section VI is concluding remarks of this paper.

II. PRELIMINARIES

A. Block Codes

Let an (N,K) block codes over GF (q) be an ordinary block
code of length N , number of information symbols K, and rate
R, where

R = (K/N) ln q (K ≤ N). [nats/symbol] (1)

From random coding arguments for an ordinary block code,
there exists a block code of length N and rate R for which
the probability of decoding error Pr(E) and the decoding
complexity G(N) satisfy

Pr(E) ≤ exp[−NE(R)] (0 ≤ R < C), (2)

and
G(N) ∼ N exp[NR], (3)

where E(·) is (a lower bound on) the block code exponent
[5], and the symbol ”∼” indicates asymptotic equality.

B. Trellis Codes

Let a (u, v, b) trellis code over GF (q) be a code of
branch length u, branch constraint length v, yielding b channel
symbols per branch, and rate r, which satisfies

r = (1/b) ln q. [nats/symbol] (4)

The probability of decoding error Pr(E) and the decoding
complexity G(v) satisfy [5]

Pr(E) ≤ uK1 exp[−vbE0(ρ)] (0 ≤ ρ ≤ 1) (5)

≤ exp{−vb[e(r)− o(1)]} (0 ≤ r < C), (6)

and
G(v) ∼ u2qv = u2 exp[vbr], (7)

where K1 is a constant independent of v, o(1) → 0 (v → ∞),
and e(·) is (a lower bound on) the trellis code exponent [5]
given by

e(r) =

{
E0(1) (0 ≤ r ≤ Rcomp)

E0(ρr) (Rcomp < r = E0(ρr)/ρr < C),
(8)

where E0(ρ) is the Gallager’s function, and Rcomp = E0(1)
is the computational cut-off rate of the channel. Note that the
following relation holds between E(R) and e(r):

E(R) = max
0<µ≤1

(1− µ)e(R/µ), (9)

which is called the concatenation construction [5]. Similarly,
letting

θ = v/u, (10)

Fig. 1. Concatenation construction of E(R) from e(r) for very noisy channel.

the following equation also holds [5]:

e(r) = min
0<θ≤1

(1/θ)E[(1− θ)r], (11)

which is called the inverse concatenation construction [5].
Letting µ = R/r, and θ = 1 − µ in (9), we have E(R) =
maxr,θ:R=r(1−θ) θe(r). By this equation, we can construct
E(R) from e(r), i.e., E(R) curve is given by the upper
envelope of straight lines from (0, e(r)) to (r, 0) for all r (See
Fig. 1).

III. UNIT MEMORY (UM) TRELLIS CODES

The UM trellis codes was discussed as the convolutional
codes which have largest free distance among all codes of the
same rates and a table on free distance obtained by the UM
trellis codes was given at short block lengths [8]. And also
the UM trellis codes were expected to have superior properties
[15].

For the (u, v, b) conventional trellis code discussed in the
previous section, letting v = 1 and introducing an (n0, k0)
block code to each branch as a component code, we have a
(u, n0, k0) unit memory (UM) trellis code. where u = 2, 3, · · ·
[15]. Note that we let n0 → ∞ for the UM trellis codes, while
v → ∞ for the conventional trellis codes.

Let a (u, n0, k0) unit memory (UM) trellis code over GF (q)
be a code of branch length u, length of component code n0,
number of information symbols of component code k0, and
rate r, which satisfies

r = (k0/n0) ln q. [nats/symbol] (12)

Lemma 1 (Thommesen & Justesen [15]): There exists a
(u, n0, k0) unit memory (UM) trellis code for which the prob-
ability of decoding error Pr(E) and the decoding complexity
G(n0) satisfy

Pr(E) ≤ exp[−n0eUM(r)] (0 ≤ r < C), (13)



and1

G(n0) ∼ u2n0q
2k0 = u2n0 exp[2n0r], (14)

where

eUM(r) =

{
2E(r/2) (0 ≤ r ≤ Rcomp)

e(r) (Rcomp < r < C),
(15)

holds. 2

We then easily have [15]

eUM(r) = 2E(r/2) > e(r) (0 ≤ r < Rcomp). (16)

IV. BLOCK CODES CONSTRUCTED BY UNIT MEMORY
(UM) TRELLIS CODES OF BRANCH LENGTH TWO

Let us consider a (u, n0, k0) unit memory (UM) trellis code,
and we let this code be converted to a block code by using
the methods described above. Since we shall compare the
conventional (N,K) block code to the block codes constructed
by the UM trellis codes, the code length N is chosen as:

N = u0n0, (17)

denoting
0 ≤ θ0 = 1/u0 ≤ 1/2, (18)

where u0 is the branch length and is an integer such that
u0 = 2, 3, · · · . The exponents of the above three methods for
the general cases of u0 = 2, 3, · · · have been derived in [6].
The exponents for the case of branch length two, i.e. u0 = 2
discussed in this paper are easily given by substitution of u0 =
2 into (21), (25), and (29) in [6]. In contrast to the exponents,
the decoding complexity of the above three methods for the
case of u0 = 2 is not simply given by substitution of it. With
careful derivations, we have quite interesting results for the
TB-UM trellis codes, since the decoding complexity can be
drastically decreased2.

A. Tail Termination Unit Memory (TT-UM) Trellis Codes

Letting a (u, n0, k0) unit memory code be terminated at the
2nd branch level, we have a (2, n0, k0) tail termination unit
memory (TT-UM) trellis code over GF (q) of length N = 2n0,
and rate R. We then easily have the following lemma [5],
where actual rate R = r/2 and r = (k0/n0) ln q.

Lemma 2: The probability of decoding error Pr(E) and the
decoding complexity G(N) for the TT-UM trellis code are
given by

Pr(E) ≤ exp[−NETT-UM(R)] (0 ≤ R < C/2), (19)

where

ETT-UM(R) =

{
E0(1) −R (0 ≤ R < Rcomp)
0 (Rcomp ≤ R < C) (20)

and

G(N) ∼ 2Nqk0 = 2N exp[NR]. (21)

2

1The number of the states of the Viterbi decoder is qk0 , and at each state it
compares qk0 survivors. The decoder repeats it u times, where the length of
the register is un0. Then the over-all decoding complexity of the UM trellis
code is given by (14).

2Strictly speaking, (22) and (30) in [6] hold for the case of u0 = 3, 4, · · · .

Note that the inverse concatenation construction of eUM(r)
for 0 < θ0 ≤ 1/2 gives E(R), while (20) is a straight line
from (0, E0(1)) to (Rcomp, 0), since θ0 = 1/2.

B. Direct Truncation Unit Memory (DT-UM) Trellis Codes

Similarly, truncation at the 2nd branch level of a (u, n0, k0)
unit memory trellis code gives a (2, n0, k0) direct truncation
unit memory (DT-UM) trellis code over GF (q) of length N =
2n0, and rate r. We then have the following lemma, where
there is no loss in rate.

Lemma 3: For the DT-UM trellis code, Pr(E), and G(N)
are given by

Pr(E) ≤ exp[−NEDT-UM(r)] (0 ≤ r < C), (22)

where

EDT-UM(r) = E(r), (23)

and

G(N) ∼ 2Nq2k0 = 2N exp[Nr], (24)

where N = 2n0, and r = (k0/n0) ln q. 2

(Proof) See Appendix A.

C. Tail Biting Unit Memory (TB-UM) Trellis Codes

Again consider a (2, n0, k0) unit memory (UM) trellis code,
and we let this code be converted to a block code by using
the tail biting technique.

Theorem 1: There exists a (2, n0, k0) tail biting unit memory
(TB-UM) trellis code for which the probability of decoding
error Pr(E) and the decoding complexity G(N) satisfy

Pr(E) ≤ exp[−NETB-UM(r)] (0 ≤ r < C), (25)

where
ETB-UM(r) = (1/2)eUM(r) (26)

and
G(N) ∼ 2Nq2k0 = 2N exp[Nr], (27)

where N = 2n0 and r = (k0/n0) ln q. 2

(Proof) See Appendix B.

V. DISCUSSIONS

A. Exponential Error Bounds

We have derived error exponents as given by (20), (23), and
(26) for the TT-UM, the DT-UM, and the BT-UM trellis codes,
respectively. Finally, we give computational results for a very
noisy channel.

Example 1: Over a very noisy channel (VNC), the error
exponent ETB-UM(r) for the TB-UM trellis codes is depicted
in Fig. 2 together with those ETT-UM(R) for the TT-UM trellis
code and EDT-UM(r) for the DT-UM trellis code. Note that
EDT-UM(r) coincides with the ordinary block code exponent
E(R) by proper choice of the rate of the component code as
r = R, which gives comparison between block code. 2

Over a VNC, we see that the following equation holds:

ETT-UM(R) ≤ EDT-UM(r) ≤ ETB-UM(r) (0 ≤ R, r < C).
(28)

It should be noted that TT-UM trellis codes with u0 =
2, 3, · · · give E(R) curve which coincides with EDT-UM(r)



Fig. 2. Error exponents for very noisy channel.

for R = r in Fig. 2. Since we are discussing the case of
u0 = 2 (θ = 1/2), ETT-UM(R) takes on positive values only
in the range 0 ≤ R < C/2 for 0 ≤ r < C.

B. Asymptotic Decoding Complexity

Using (21), (24), and (27), we shall discuss the decoding
complexity of the block codes constructed by the UM trellis
code based on the three methods. Taking into account of (20),
(23), and (26), the probability of decoding error Pr(E) can
be rewritten in terms of the decoding complexity G as shown
in the following, where we have derived asymptotically N by
using (21), (24), and (27), and have substituted them into (19),
(22), and (25), respectively, which asymptotically leads a form
as n → ∞ such that:

Pr(E) <∼ G−α(r). (29)

Theorem 2: The following equations hold asymptotically
at the same G:

(a) For the TT-UM trellis codes:

αTT-UM(R) =

{
[E0(1) −R]/R (0 ≤ R < Rcomp)
0 (Rcomp ≤ R < C),

(30)
(b) for the DT-UM trellis codes:

αDT-UM(r) = E(r)/r (0 ≤ r < C), (31)

(c) for the TB-UM trellis codes:

αTB-UM(r) = (1/2)eUM(r)/r (0 ≤ r < C). (32)

2

(Proof) See Appendix C .

Comparing the ordinary block code with the TB-UM trellis
code, we have the following interesting remark.

Remark 1: For the same decoding complexity G(N) and the
same rate r = R, for all rates less than the capacity over a very
noisy channel, the upper bound on the probability of decoding
error Pr(E) for the TB-UM trellis code is asymptotically

Fig. 3. Decoding complexity for very noisy channel.

smaller than or equal to that for the ordinary block code as
shown in Fig. 3. 2

Since αTB-UM(r) is larger than αTT-UM(R) and
αDT-UM(r), the TB-UM trellis codes can achieve a smaller
upper bound on the probability of decoding error than the
others. However it decreases only algebraically in decoding
complexity G.

VI. CONCLUDING REMARKS

We have shown that the block codes constructed by the tail
biting unit memory trellis codes of branch length two have
remarkable properties from both the error exponent and the
decoding complexity compared to the ordinary block codes.

In this paper, we have discussed only random coding
exponents, a derivation of expurgated exponents is remained as
a further research. The minimum distance and the asymptotic
distance ratio of the codes discussed here are also remained
as further works.
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APPENDIX A
PROOF OF LEMMA 3

Followed by (126) of [5], we have

Pr(E) ≤ q2k0ρ exp[−2n0E0(ρ)]

≤ exp[−NE(r)]. (A.1)

APPENDIX B
PROOF OF THEOREM 1

Instead of showing the encoding and decoding procedure
of (c) the TB-UM trellis code, we give the trellis diagrams
of it together with (a) the TT-UM and (b) the DT-UM trellis
codes as illustrated in Fig. A.1. In this figure, the states si (i =
1, 2, · · · , qk0) are shown by the nodes. The true path is denoted
by3 x∗

1(= 0N ) with bold solid lines, the maximum likelihood
(ML) codeword (path) for the i-th sub-trellis diagram, by x̂i

with solid lines, and possible paths, with dotted lines. Note
that the over-all decoded codeword x̂ of the TB-UM trellis
code is given by:

x̂ = argmax
i

Pr(y|x̂i) (i = 1, 2, · · · , qk0) (A.2)

where

x̂i = argmax
j

Pr(y|xi,j) (j = 1, 2, · · · , qk0), (A.3)

y is a received sequence, and xi,j is the j-th path of the i-th
sub-trellis diagram.
Let us define the error events E1, E2, and E3 as follows:
E1: The error events of the 1st sub-trellis diagram which

contain the true path x∗
1, where the all possible paths

3Without loss of generality, we assume the true path is given by all 0 of
length N = 2n0, since codes are linear.

(a) TT-UM trellis code. (b) DT-UM trellis code.

(c) TB-UM trellis code.

Fig. A.1. Trellis diagrams for TT-UM, DT-UM, and TB-UM trellis codes
(q = 2, k0 = 2).

x1,j (j = 2, 3, · · · , qk0) remerge with x∗
1 at the 2nd

branch level (which does not contain the event E3).
E2: The error events of the all sub-trellis diagrams except

for the 1st sub-trellis diagrams (i.e., 2nd, 3rd, · · · , qk0-th
sub-trellis diagrams) which remerge with the true path
x∗
1 at the 1st branch level (which do not contain the true

path, and also do not contain the error event E3).
E3: The error events for which the all possible paths diverge

at the 0-th branch level, and never remerge with x∗
1 in

the all sub-trellis diagrams except for the 1st sub-trellis
diagram.

The error events E1, E2, and4 E3 for the TB-UM trellis code

4Since the tail biting condition must hold, the state si at the 0-th branch
level is the same si at the 2nd branch level, and the number of possible
paths is only qk0 − 1 (= 3, in the figure) for each subtrellis diagram, where
i = 2, 3, · · · , qk0 for the TB-UM trellis code of branch length two.



Fig. A.2. Error events E1, E2, and E3 for the TB-UM trellis code.

are illustrated in Fig. A.2. Then the probability of decoding
error Pr(E1) for the 1st sub-trellis diagram is upper bounded
by:

Pr(E1) ≤ exp[−N(1/2)eUM(r)]. (A.4)

While assuming the (−1)-th branch level, and cyclically shift-
ing the branch level by −1, we easily see that the probability of
decoding error Pr(E2) within the sub-trellis diagrams starting
at si and ending at si (i ̸= 1, i = 2, · · · , qk0) is also bounded
by Pr(E1). At the decoding step of computing (A.3), if the
event E3 occurs, the true path x∗

1 is never on the list L, which
includes only the qk0 − 1 x̂i’s as shown in Fig. A.1 (c) and
Fig. A.2 E3. As a result, E3 can be regarded as list decoding
error L with the list size |L| = qk0 −1. The probability of list
decoding error Pr(L) with the list size |L| can be derived as
follows [2], [4], [5], [13]:

Lemma A.1 (Ebert [2]): Consider a block code of length N
and rate r. Letting xm be a transmitted codeword, and y, a
received sequence over a discrete memoryless channel , if

Pr(y|xm) ≤ Pr(y|xm′) for at least |L| distinct xm′

(m ̸= m′,m,m′ = 1, 2, · · · ,M) (A.5)

hold, then the probability of list decoding error Pr(L) is given
by

Pr(L) ≤ exp[−NE(r′)], (A.6)

where

r′ = (1/N) ln(M/|L|) (A.7)

and M = exp[Nr]. 2
Lemma A.2: Let y be a received sequence which never

remerges with the true path x∗
1. Then there are x̂i and x̂i′ ’s

which satisfy (A.5), by substitution of x∗
1 into xm, and x̂i

and x̂i′ ’s into xm′ , where i ̸= i′, i, i′ = 2, 3, · · · , qk0 , and we
have assumed that Pr(xi,j) are uniformly distributed. 2

(Proof) There is x̂i such that y satisfies y ∈ R(x̂i) (i ̸= 1),
where R(x̂i) denotes the decoding region of x̂i (i.e., y is
decoded into x̂i with maximum-likelihood decoding). Next,
assume the best component code whose average probability
of decoding error pE is least and satisfies [3]

pE = exp{−N0[E(r) + o(1)]}, (A.8)

and also assume the equi-error channel between codewords
of the component code5. The transition probability between
distinct codewords is given by

pe = pE/(q
k0 − 1). (A.9)

Note that asymptotically as n0 → ∞,

Pr(y ∈ R(x̂i)|x̂i) = (1− pE)
2 (A.10)

Pr(y ∈ R(x̂i)|x̂i′) ≥ (1− pE)pe, (A.11)

and

Pr(y ∈ R(x̂i)|x∗
1) = pe

2 (A.12)

hold. Since 1− pE ≃ 1, and pe ≪ 1, we complete the proof.
2

After the above preparations, by letting |L| = qk0 − 1 <
exp[Nr/2] in (A.7), and hence r′ = r/2, we have over-all
probability of decoding error Pr(E) by taking the union bound:

Pr(E) ≤ Pr(E1) + Pr(E2) + Pr(E3)

≤ 3 exp{−N min[(1/2)eUM(r), E(r/2)]}

≤ exp{−N [(1/2)eUM(r)− o(1)]}, (A.13)

where o(1) = (1/N) ln 3. From (11), (15), and (16), since
e(r) = minθ(1/θ)E[(1−θ)r] ≤ (1/θ)E[(1−θ)r] (0 < θ ≤ 1)
is satisfied, we have (A.13). Finally from Fig. A.1 (c), since
the paths diverge at 0-th branch level with starting the state
si and all the paths remerge at the 2nd branch level with the
(same ending) state si for the i-th sub-trellis diagram (i =
1, 2, · · · , qk0), there is no need to compare qk0 survivors at
the 2nd branch level. The number of the sub-trellis diagrams
is qk0 , then the total complexity is 2Nq2k0 , which leads (27).

APPENDIX C
PROOF OF THEOREM 2

For the TB-UM trellis codes, we have asymptotically from
(27)

N ∼ (lnG)/r. (A.14)

Substitution of (A.14) into (25) and (27) gives (32). By quite
similar manipulation, we have (30) and (31).

5The equi-error channel gives the maximum value of E0(·) function for
the super channel with qk0 inputs and qk0 outputs [3].


