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Abstract— To solve multiple classification problems with
M(≥ 3) categories, many studies have been devoted using
N(≥ dlog2 Me) binary ({0, 1}) classifiers, where these systems
are known as binary Error-Correcting Output Codes (binary
ECOC). As an extended version of the binary ECOC, the
ternary ({0, ∗, 1}) ECOC have also been discussed, where
ternary classifiers classify data into positive examples when
the element is 1, into negative examples when the element is
0, and no classification when the element is ∗. In this paper,
we discuss the ternary ECOC system from the view point of
the system evaluation model based on rate-distortion function.
First, we discuss a table of M code words with length N
which is given by a ternary matrix W of M rows and N
columns. Next, by leveraging the benchmark data for multi-
class document classification which is widely used in Japan,
the relationships between the probability of classification error
Pe and the number of the ternary classifiers N for a given
M are experimentally investigated. In addition, by assuming
the M -dimensional Normal distribution for a classification data
model, the relationship between Pe and N for a given M is also
examined. Finally, we show by the system evaluation model that
the ternary ECOC systems have desirable properties such as
“Flexible”, “Elastic”, and “Effective Elastic”, when M becomes
large.

I. INTRODUCTION

In recent research and development on data science, es-
pecially in the field of machine learning, the importance
of techniques for extraction of necessary information from
large-scale data and for automatic data classification is
rapidly increasing [5]. Various kinds of sets such as a set
of documents, a set of patterns, a set of images, etc. to
be classified have M classes (categories), where M ≥ 3.

*Research leading to this paper was partially supported by the Mistry
of Education, Science, Sports and Culture Grant-in-Aids for Scientific
Research (B) 26282090, and (C) 25330045.

1Shigeichi Hirasawa is with Research Institute for Science and Engineer-
ing, Waseda University, Tokyo, 169-8555 Japan hira@waseda.jp

2Gendo Kumoi and Masayuki Goto are with School of
Creative Science and Engineering, Waseda University, Tokyo,
169-8555 Japan m.kumoi@kurenai.waseda.jp and
masagoto@waseda.jp

3Hideki Yagi is with Graduate School of Informatics and Engineer-
ing, the University of Electro-Communications, Tokyo 182-8585 Japan
h.yagi@uec.ac.jp

4Manabu Kobayashi is with Center for Data Science, Waseda University,
Tokyo, 169-8050 Japan mkoba@waseda.jp

5Tetsuya Sakai is with School of Fundamental Science
and Engineering, Waseda University, Tokyo, 169-8555 Japan
tetsuyasakai@acm.org

6Hiroshige Inazumi is with Faculty of Informatics, Aoyama Gakuin Uni-
versity, Kanagawa, 229-8558 Japan inazumi@si.aoyama.ac.jp

Although the Support Vector Machines (SVMs) have been
improved in performance to directly solve multiclass clas-
sification problems using as a single multi-valued classifier,
the attainable performance is still insufficient and the con-
figuration method for such SVMs become complicated, as
M becomes large. Therefore, a method to solve them using
multiple simple q-ary classifiers in parallel is introduced and
discussed, where q < M . Since this method uses the concept
of error-correcting codes, it is called error-correcting output
code (ECOC) [1], [2], [3], [4], [5], [13], [14], [15]. Here,
the coding of ternary (q=3) ECOC is given by an M×N
matrix W , where M is the number of categories, and N is
the number of q-valued classifiers, and W=[wij] is called
a code word table. While a decoding method of ternary
ECOC is to classify data as a positive example when wij
= 1, as a negative example when wij = 0, and to not classify
when wij = * (don’t care). Compared to the binary ECOC,
it has been shown that the ternary ECOC has significantly
improved its expressive power of the code word table, and the
latter has smaller probability of classification error than the
former [4],[15]. However, the number of required classifiers
is significantly increased for the ternary ECOC compared to
the binary ECOC for a given M .

On the other hand, in the late 1970s, J. Pearl et al.
constructed a system evaluation model using a rate-distortion
function and performed a detailed evaluation for Question
Answering (QA) systems [16]. The trade-off between the
storage space and the probability of error which corresponds
to rate and distortion, respectively, inherent in the QA sys-
tems was theoretically clarified. This idea pays attention to
the trade-off curve saying, ”If we tolerate only a small error
probability, we can drastically reduce the storage space,”
for which the system is called elastic as the system size
becomes large. The desirable properties such as flexible and
elastic, are defined and made it possible to evaluate systems
of interest. In our previous work, we applied this model
to information systems such as network structures [12] and
files with consecutive retrievable [11]. Pearl et al.’s model
has, however, some strong restrictions to apply to the target
information systems. We successfully reduced these restric-
tions, and introduced new properties to make them useful by
a generalized trade-off model [6],[7]. By using this model,
it is possible to ask whether the target information systems
have desirable properties or not. Hence, prior to researching,
developing or designing the target systems, it is useful to



check the properties of the target information systems in
advance. We apply this model to the disk allocation problem
for questionnaire data files, and have found a method which
enables them to have the desired properties efficiently by
using unequal error-correcting codes [8].

In this paper, we apply the system evaluation model
to the ternary ECOC. The trade-off relationship between
the average probability of classification error (performance
degradation) Pe and the number of ternary classifiers (in-
vestment cost) N as two variables and the number of
categories (the scale of the system) M as a parameter, is
experimentally examined by using the benchmark data of
multiclass classification problem (Japanese newspaper arti-
cles of the 2015 Yomiuri Shimbun [17]) and M -dimensional
Normal distribution for classification data model [10]. It
should be noted that it is not the purpose of this research
to obtain a code word table which minimizes the probability
of classification error [13] using ternary ECOC. That is, this
paper studies another aspect on ECOC.

Throughout this paper, we evaluate the average perfor-
mance of the ternary ECOC. Section II briefly describes the
system evaluation model. How to construct the ECOC is
discussed in Section III. Section IV shows the construction
methods for code word tables, and Section V reports on
our experimental results. Section VI provides the concluding
remarks of this paper.

II. PRELIMINARIES

A. Outline of Rate-Distortion Theory

Rate-distortion theory discusses data compression by the
trade-off property between rate and distortion [16]. The rate-
distortion function can be written as:

L = R(D) (1)

where L is the rate defined by L = (1/n∗) log |C|, where
|C| is the number of code words, n∗, the code length, and D,
the distortion. The L = R(D) is usually a convex downward
and non-increasing function of D.

B. System Evaluation Model

Generally, the rate L discussed in the previous subsection
corresponds to the investment cost of a system, and distortion
D, the performance degradation of the system [16]. By
extending the rate distortion model, we have proposed the
trade-off model for system evaluation [6], [7], where we have
also introduced a parameter G as the scale of the system.

Let the rate L be normalized by the maximum of L, Lmax,
and the distortion D, by the maximum of D, Dmax, then we
have the following normalized function by ` = L/Lmax, and
d = D/Dmax, and introducing G:

` = r(d;G). (2)

For evaluation of the systems, we define the following prop-
erties to the normalized trade-off system evaluation function
(2):

Definition 1

1) Flexible [16]: The system is said to be flexible, if ` =
r(d) is a decreasing and convex downward function of
d. And the system A with ` = rA(d;G) is said to be
more flexible than the system B with ` = rB(d;G), if
rA(d;G) < rB(d;G) for arbitrary d(0 < d < 1), and
G(G > 1). (See Fig. 1 (1)).

2) Elastic [16]: The system with ` = r(d;G) is said to
be elastic, if ` = r(d;G) is a decreasing function of
G for arbitrary d(0 < d < 1). (See Fig. 1 (2)).

3) Effective elastic [6]: The system is said to be effective
elastic, if the system is elastic and ` = r(d;G) is a
convex downward function of G. (See Fig. 1 (3)).

4) Trivial elastic [16]: The system with ` = r(d;G)
is said to be trivial elastic, if d = r−1(0;G) is a
decreasing function of G, where d = r−1(`;G) is the
inverse function of ` = r(d;G).

5) Marginal elastic [6]: The system with d = r−1(`,G)
is said to be marginal elastic, if d = r−1(0, G) is a
convex downward function of G.

Although the system discussed here is not applicable to 4)
Trivial elastic and 5) Marginal elastic, they are sometimes
observed depending on the structure of systems (See [11]).

Fig. 1. Trade-off model for system evaluation

Fig.1 illustrates typical examples given in Definition 1. As
shown in Fig. 1 (1), ` is a decreasing and convex downward
function of d, hence we can decrease ` drastically tolerating
a slight increase in d.

III. MULTI-CLASS CLASSIFICATION SYSTEM
USING TERNARY CLASSIFIER

A. Configuration of Multi-class Classification System

In the automatic classification problem of real data such as
newspaper articles and hand-written characters, the number
of categories to be classified is M(M ≥ 3). For example, the
former [17] has 10 categories in terms of their publication
space (See Table IV) and the latter has 26 categories.

Classification problems of M(≥ 3) categories can
be solved directly using multi-valued classifiers such as
the SVMs. However, as M increases, the configuration of
multi-valued classifiers becomes complicated and it becomes
difficult to achieve high performance. Therefore, a method
has been proposed for performing multiclass classification
using multiple simple binary classifiers [3]. The key idea
behind it is to reduce the M -class classification problem to
a series of N binary problems. Since it uses the concept of
Error-Correcting Codes (ECC), the method is called (binary)



Error-Correcting Output Codes (ECOC). Furthermore, the
(binary) ECOC method is extended to the ternary ECOC
method [1].

Coding
Usually, in coding theory, the i (i = 1, 2, · · · ,M) of

the i-th category Ci is an information symbol, and check
(redundant) symbols are added to this to generate a code
word of length N . If the symbol is binary, the i is con-
verted to a binary sequence of length K, and a K × N
generator matrix is multiplied to obtain a code word ci. If
an error1 (noise) occurs in the communication channel, the
added redundancy is used to correct and detect the error.
Therefore, the distance (measured with Hamming distance,
Lee distance, Euclidean distance etc.) between arbitrary code
words obtained is designed to be as large as possible. The
Hamming codes, the BCH codes, the RM (Reed-Muller)
codes, the RS (Reed-Solomon) codes etc. are well-known
as powerful codes.

In ECOC, using these known codes, M code word vectors
of length N are extracted, and a code word table2 W which
meets the target data is obtained. Here, we represent matrix
W as follows:

W = [wij ](wij ∈ 0, ∗, 1, i = 1, 2, · · · ,M, j = 1, 2, · · · , N)

= [dT1 ,d
T
2 , · · · ,dTN ]

= [c1, c2, · · · , cM ]T (3)

where T represents the transpose of a matrix (or a vector).
Note that matrix W implicitly describes a decomposition
scheme of the original multiclass classification problem.

In the training phase, letting the element of matrix W ,
wij ∈ {0, ∗, 1} in each classifier dj (j = 1, 2, · · · , N), if
wij = 1, then training data are used as positive examples,
if wij = 0, then they are used as negative examples, and if
wij = ∗ , then they are ignored.

Example 1. Simple examples of the code word table are
shown in TABLE I. 2

TABLE I
EXAMPLES OF CODE WORD TABLES.

(a) Binary “one vs. the
rest” method (M = 4 and
N = 4)

(b) Ternary “one vs. one”
method (M = 4 and N =
4)

d1 d2 d3 d4 d1 d2 d3 d4

c1 1 0 0 0 c1 1 * * 0
c2 0 1 0 0 c2 0 1 * *
c3 0 0 1 0 c3 * 0 1 *
c4 0 0 0 1 c4 * * 0 1

This extension increases the expressive power of ECOC,
so that ternary ECOC can be applied to nearly all binary
ECOC. For example, pairwise classification, where one

1In the case of ECOC, the error is caused by external influences such as
a too small sample size [15].

2This matrix is called the ECOC Matrix [11], the coding matrix [1], the
classifier structure, the code word structure, etc.

classifier is trained for each pair of classes, could not be
modeled in the original framework, but can be modeled
with ternary ECOC (See TABLE I (b)).

Decoding Method
The ternary classifier used in this study is the SVM. When

test data (whose category is unknown) y is input to the j-th
classifier, hj(y) ∈ (−∞,+∞) is output. Based on this, the
test data y is classified into Ci′ estimated by f(y) = Ci′ ∈
C, where

f(y) = arg max
Ci′∈C

gi(y). (4)

This decoding method is called the maximum margin soft
decision SVM [1], [5], which is calculated as

gi(y) =
∑
j

I(wij)hj(y), (5)

where

I(wij) =


1, wij = 1

0, wij = ∗
−1, wij = 0.

It should be noted that the ternary ECOC has different
meanings of ∗ depending on the decoding methods. There
are Hamming distance decoding method, Euclidean distance
decoding method, loss based decoding method, etc. and clas-
sification performances are different. The decoding method
of equations (4) and (6) is the one of the attenuated soft
decision decoding methods.

B. Correspondence Between System Evaluation Model and
ECOC

In Section II, we have shown the rate-distortion function
(1), and the trade-off system evaluation function (2). The
corresponding trade-off function (9) for the ternary ECOC
will be shown later in Section IV, where the number of
ternary classifiers n corresponds to the investment cost `,
and the probability of classification error pe, the performance
degradation d, respectively. And also, the scale of system G
corresponds to the number of category M . Total correspon-
dence between system evaluation model and ECOC is given
by TABLE II.

TABLE II
EVALUATION OF ECOC. (CORRESPONDENCE TABLE) 3

Rate-Distortion
Theory

System Evaluation
Model

Ternary ECOC

Rate (L) Investment Cost (`) Number of Ternary Classi-
fiers (n)

Distortion (D) Performance Degra-
dation (d)

Probability of Classification
Error (pe)

Scale of System (G) Number of Categories (M )

3In the following sections, unlike Fig. 1, the horizontal axis is used for
n, and the vertical axis, for pe.



TABLE III
TERNARY EXHAUSTIVE CODE. (M = 4, AND Nmax = 25)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25

c1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 1 1 1 ∗ ∗ ∗
c2 0 0 0 0 1 1 1 0 1 1 0 1 1 ∗ ∗ ∗ 0 0 0 0 ∗ ∗ 1 1 ∗
c3 0 0 1 1 0 0 1 1 0 1 ∗ ∗ ∗ 0 1 1 0 1 1 ∗ 0 ∗ 0 ∗ 1
c4 0 1 0 1 0 1 0 ∗ ∗ ∗ 1 0 1 1 0 1 1 0 1 ∗ ∗ 0 ∗ 0 0

IV. CONSTRUCTION METHODS OF CODE WORD
TABLE

A. Exhaustive Codes

In our previous work which discussed binary ECOC [9],
[10], we started from the binary exhaustive codes, since ex-
haustive codes are exhaustively extracting all column vectors
which contribute to classification. Such a method is, however,
not realistic because the code length increases exponentially
as M increases. In fact, the code length Nmax of the binary
exhaustive codes is given by:

Nmax = 2M−1 − 1. (6)

We can extract only the useful column vectors to construct
efficient exhaustive codes with short code lengths (later we
call them shortened exhaustive codes). Here, an M ×Nmax

ternary exhaustive code for M categories and code length
Nmax are derived as follows:

Let the number of ∗′s, | ∗ | = α, a binary exhaustive code
for M − α categories be represented by ex(M − α), and a
part of the ternary exhaustive code for which each column
vector includes α∗′s be represented by EX(α). First, let
α = 0, and EX(0) = ex(M). Next, set α = 1 and add α∗′s
to each column of ex(M − α) to make a column vector of
length M (in this case, there are

(
M

M−α
)

combinations), and
EX(1) = ex(M − 1). Letting α = α+ 1 until α = M − 2
(since each column includes at least 2 symbols, i.e., 0 and
1). Then, we have a ternary exhaustive code which is given
by the concatenation of EX(0), EX(1), · · · , EX(M − 2),
and the code length Nmax of the ternary exhaustive codes is
given by the following equation:

Nmax =

M−2∑
α=0

(
M

M − α

)
(2M−1−α). (7)

Example 2: An example of M = 4, a ternary exhaustive
code is shown in TABLE III. 2

B. Shortened Exhaustive Codes

If we consider a shortened4 version of exhaustive code,
then we can decrease the investment cost (decreasing the
number of binary classifiers) N by tolerating the perfor-
mance degradation (increasing the probability of classifica-
tion error) Pe. For given M categories, we shall evaluate the
relationships between N and Pe, where Pe corresponding to

4In coding theory, when a code of length N and the number of
information symbols K is represented by an (N,K) code, we call an
(N−s,K−s) code as a shortened code. Here, although exhaustive code is
not a systematic code, where systematic code can separate the information
symbols from the code word, we call a code which is obtained by removing
the s symbols from the code word of length N as a shortened code.

N column vectors selected from the Nmax column vectors is
obtained and is averaged over all

(
Nmax

N

)
combinations. The

result is experimentally obtained as the following relation:

Pe = S(N,M). (8)

V. EXPERIMENTS AND DISCUSSIONS

A. Conditions of Experiments

In this paper, we primarily focus on a document classi-
fication task, since it is a typical multiclass classification
problem. As the benchmark data, we use the Yomiuri 2015
text classification problem with Yomiuri Shimbun articles
[17]. TABLE IV shows the specifications of benchmark data
and experiment data.

TABLE IV
SPECIFICATION OF EXPERIMENTAL DATA.

Benchmark data (2015 Yomiuri Shimbun article) Specification
Number of Categories 10
Word feature extraction by
feature vector (dimension)

Morphological analysis of documents
(7,432 words)

Category(number of data) Politics (23,719); Economy (19,490);
Local (16,414); Sports (30,495); Cul-
ture (15,127); Life (10,747); Crime case
(24,545); Science (2,369); International
(1,667); Imperial family (257)

Experiment Data (data extracted and used) Specification
Categories (number of
categories)

Politics, Economy, Sports, Local, Cul-
ture, Life, Crime Case, Science (8)

Total number of experi-
mental data

12,000

Number of training data /
category

1,350 (10,800 in total)

Number of test data / cat-
egory

150 (1,200 in total)

B. Relationship between Pe and N

Experiment 1: First we show the relationship between the
average probability of classification error Pe and the code
length N which corresponds to (8) for the case of M = 4 in
Fig. 2. Note that for given N,M categories are selected from
Mmax categories, and corresponding Pe is also averaged over
all
(
Mmax

M

)
combinations, where Mmax = 8.

Remark 1: In Fig. 2, we also show the range of the prob-
ability of classification error Pe for given N by the vertical
bold lines, since the probability of classification error gives
different values depending on the combination of selected
column vectors, where each column dj ∈ {0, ∗, 1}M . 2

C. Trade-Off Curves for System Evaluation— Relationship
between pe and n

We let Nmin be the code length of the exhaustive code
with distinct M row vectors which has the smallest number



Fig. 2. Relationship between average probability of classification error
Pe and code length N by ternary ECOC using Benchmark Data [17] for
M = 4.

of column vectors, then we can choose5 Nmin = dlog2Me.
While, Nmax is obviously given by the code length of the
(full) exhaustive code.

By the above preparation, (normalized) trade-off function
for system evaluation is given by letting Pe/Pe,max = pe,
and N/Nmax = n, we have the following equation, where
Pe,max corresponds to the value of Pe for N = Nmin, where
we assume the function is monotonically decreasing:

pe = s(n,M). (9)

Experiment 2: We examine the same experiments as stated
in Experiment 1 for M = 4, 5, 6, and 7, by ternary ECOC,
the results obtained are shown in Fig. 3, together with those
by binary ECOC.

Remark 2: From Fig. 3, we have
• The ternary ECOC is more flexible than the binary

ECOC, since pe of ternary ECOC is smaller than that
of binary ECOC for any n and for a given M . 2

Remark 3: For the ternary ECOC, we have from Fig. 3
• The trade-off curves are convex downward, and are

shown to be flexible.
• Most of the trade-off curves go toward the origin as M

becomes large except in the neighborhood of n = 1,
and are almost elastic. 2

D. Relationship between n and M for given pe
Experiment 3: From the results of Fig. 3, we can obtain

Fig. 4, which shows n as a function of M for a constant
value of pe, where pe = 0.7, 0.6, 0.5, and 0.4.

Remark 4: For both (binary and ternary) cases, the curves
are almost convex downward, hence are almost effective
elastic. 2

E. Additional Experiment

Finally, we apply our method to the artificial data model
which is given by the random variables generated by M -
dimensional Normal distribution N(µ, σ2), where µ =

5dxe denotes the smallest integer larger than or equal to x. Note
that we can represent M by dlog2Me column vectors by usual binary
representation.

Fig. 3. Trade-off relationship between investment cost n and performance
degradation pe with scale of system M by ternary ECOC using Benchmark
Data [17].

Fig. 4. Relationship between scale of system M and investment cost n
by ternary ECOC using Benchmark Data [17].

(µ1, µ2 · · · , µM ) is the average, and σ2 = [σ2
ij ] , the

variance. The specification of training data and test data is
given as shown in TABLE V.

Experiment 4: For the case of µi = 1(i = 1, 2, · · · ,M),
and σ2

ii = 0.25, σij = 0 (i 6= j) , Fig. 5 shows only the
results.

Remark 5: From Fig. 5, we have
• The trade-off curves are decreasing and convex down-

ward, and are shown to be flexible.
• Most of the trade-off curves go toward the origin as M

becomes large, and are elastic.
• The trade-off curves in Fig. 4 become narrower on the

line where pe is a constant, as M becomes large. Hence
it is almost effective elastic. 2

As we have described above, the remarkable results ob-
tained by Experiments are highlighted as Remarks 1 to 5.



TABLE V
DESIGNATION OF ARTIFICIALLY GENERATED DATA.

Categories (number of categories) 4, 5, 6, 7
Number of training data / category 1000 (7,000 in total)
Number of test data / category 100 (700 in total)

Fig. 5. Trade-off relationship between investment cost n and performance
degradation pe with scale of system M by ternary ECOC for µi = 1(i =
1, 2, · · · ,M ), and σ2

ii = 0.25, σij = 0(i 6= j).

F. Additional Discussions

As additional discussions, we can state that:
In our previous work [9], [10], we chose the minimum

code length of binary exhaustive codes, Nmin = M − 1,
where we assume the trivial “modified one vs. the rest”
method6, on condition that the M row vectors must be
distinct. Consequently, the code length of binary (shortened)
exhaustive codes N is defined by Nmin = M − 1 ≤ N ≤
Nmax. Here, as described in Subsection V, C, Nmin =
dlog2Me. However, when using binary classifiers and using
ternary classifiers, both have elastic and effective elastic, and
their trade off curves are almost the same. As a result, it can
be said that the range of the code length of exhaustive codes
has robustness from the view-point of system evaluation
model.

VI. CONCLUSION
In this paper, it is shown that the ternary ECOC is better

in the sense that it is more flexible than the binary ECOC
from the view-point of system evaluation model by the trade-
off curves. Also, both have elastic properties. This indicates
that the probability of classification error can be drastically
reduced, if the code length is relatively small. In a range of
relatively small code length, it has a practical possibility. As
a result, it is worthwhile to study and design the ECOC in
more detail. If they are shown to be unelastic [16], then the
scope of application of the ECOC is no longer limited.

6The “modified one vs. the rest” method is given by excluding the column
vector (0, 0, · · · , 0, 1)T from the “one vs. the rest” method.

As future works, it is necessary to apply our approach
to many other multi-valued classification problems such as
hand-written character recognition [18] and image classifica-
tion, to show that this kind of classification problems also has
desirable properties. In addition, elastic property means that
constructive methods of ECOC can reduce the probability of
classification error with a relatively small code length, which
also remains to be solved using fruits of code theory.
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