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Abstract—Consider M -valued (M ≥ 3) classification systems
realized by combination of N (N ≥ ⌈log2 M⌉) binary classifiers.
Such a construction method is called an Error Correcting Output
Code (ECOC). First, focusing on a Reed-Muller (RM) code, we
derive a modified RM (mRM) code to make it suitable for the
ECOC. Using the mRM code and the Hadamard matrix, we
introduce a simplex code which is one of the powerful equidistant
codes. Next, from the viewpoint of system evaluation model, we
evaluate the ECOC by using constructive coding described above.
We show that they have desirable properties such as Flexible,
Elastic, and Effective Elastic as M becomes large, by employing
analytical formulas and experiments.

Index Terms—multi-valued classification, ECOC, error cor-
recting code, Reed-Muller code, simplex code, Hadamard matrix,
trade-off, system evaluation

I. INTRODUCTION

For binary classifiers, there have been studies on such as
Support Vector Machines (SVM) [1]–[3], Relevance Vector
Machines (RVM) [4] and Regularized Least-Squares Classi-
fication [5]. There are two methods for solving the multi-
valued classification problem: (i) a method of directly ex-
tending a single binary classifier to a multi-valued classifier
and (ii) a method of constructing a multi-valued classifier
using multiple binary classifiers. Although the former uses a
high-performance classifier such as the SVM, it requires the
large amount of space and time calculation as M becomes
large, where M is the number of categories for the multiple
classification problems. If the accuracy is remained in higher;
as a result, the cost increases. The latter is realized by
combining N binary classifiers in parallel, where N is the
number of binary classifiers. It is a powerful method for large
M , since it can be constructed systematically by using the

concept of error correcting codes. Hence, it is called Error
Correcting Output Code (ECOC) [6].

In this paper, first we focus on a Reed-Muller (RM) code
which is efficient in low-rate, where the RM code is also
one of the practically noteworthy codes which is used for
imagetransmission of the Marina 6 in the 1960s. We derive
a modified RM (mRM) code [7] by modifying the RM code
to be suitable for the ECOC method, and further clarify the
relationship between it and a Hadamard matrix [8]–[10]. The
obtained codes are equidistant codes which are a class of the
simplex codes, and the performance will be shown when these
codes are used for the ECOC. The simplex code is an excellent
code in the sense that it satisfies the Plotkin bound by the
equality.

Next, for the number of categories (system scale)1 M , using
artificial data and benchmark data, we investigate the trade-off
relationships between code length (system investment cost) N
and the probability of classification error Pce between cate-
gories (system performance degradation) from the standpoint
of system evaluation using the normalized trade-off functions.
It is shown that as the number of categories M becomes large,
the ECOC system has elastic property and effective elastic
property.

Throughout this paper, we shall evaluate the average prob-
ability of the worst classification error between categories for
the ECOC methods with binary classifiers. In Section II, we
define a codeword table, which decides the performance of
the ECOC method. Construction methods for valid codeword
tables for the ECOC which can improve the performance

1Terminology A of ( A ) stands for which used in general system evaluation
model.
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are clarified, and a modified RM code is derived from an
RM code. In Section III, introducing a Hadamard matrix,
we lead the simplex code. A mathematical derivation on the
performance of constructive coding is also shown in Section
IV. Section V discusses the system evaluations of the ECOC
using constructive coding. Discussions on the properties of the
ECOC methods are given in Section VI. Section VII describes
concluding remarks.

II. CODEWORD TABLES

A. Configuration of Codeword Tables and Their Properties

The performance of the ECOC is determined by the code-
word table W with M rows and N columns, where

W = [wij ], wij ∈ {0, 1}
(i = 1, 2, . . . ,M ; j = 1, 2, . . . , N). (1)

The i-th row of W , ci, and the j-th column of W , dj are
represented by

ci = (wi1, wi2, . . . , wiN ), (2)

and

dj = (w1j , w2j , . . . , wMj)
T, (3)

where T indicates the transpose of the vector. Here, the i-th
row vector ci and the j-th column vector dj of the codeword
table indicate the representative of the i-th category ci, and the
boundary region of the j-th binary classifier dj , respectively.

Definition 1. Letting a binary vector of length L be
u = (u1, u2, . . . , uL), we call the binary vector uC =
(uC

1 , u
C
2 , . . . , u

C
L), the complement vector of u, where uℓ ⊕

uC
ℓ = 1 (ℓ = 1, 2, . . . , L) holds, and the symbol ⊕ denotes

the exclusive OR operation.

Note that obviously for the column vectors, valid codeword
tables do not contain:

(i) identical column vectors,
(ii) the all 0’s and the all 1’s column vectors, and

(iii) the column vector dC
j , if dj exists for any j. 2

These are called the column operation for the ECOC.
Similarly, for the row vectors, they do not contain:
(i) identical row vectors, and

(ii) the row vector cCi , if ci exists for any i. 3

These are called the row operation for the ECOC.

B. Exhaustive Codes [6]

For a given M , generate the all 2M column vectors of length
M . Then the column operation described above is performed
on these column vectors. The resultant codeword table gives

2This is because they have the same classification boundary and the outputs
of them are highly correlated.

3This is because the category ci and the category cCi are always classified
into separate groups, even if the all binary classifiers which divide into two
groups are used.

that for the (Nmax, log2 M, (Nmax + 1)/2) exhaustive code
with M rows and Nmax columns, where

Nmax = 2M−1 − 1. (4)

Here, the code of length N , the number of information
symbols K, and the minimum design distance D is denoted as
the (N,K,D) code. Hereafter, we use shortened versions of
the exhaustive code denoted by a shortened exhaustive code.
The codes composed by selecting N (< Nmax) column vectors
from the exhaustive codes of length Nmax are called shortened
exhaustive codes, where the number of such codes is

(
Nmax

N

)
.

Example 1. For M = 5, the codeword table of an exhaustive
code is shown in Table I. □

TABLE I
CODEWORD TABLE OF EXHAUSTIVE CODE (M = 5, Nmax = 15, D = 8)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

c1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
c3 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
c4 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
c5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

C. Modified Reed-Mullar Codes [7]

For any positive integer m (≥ 2), there is a first order
(2m,m + 1, 2m−1) linear Reed-Muller (RM) code. Here,
generate an RM code such that 2M = 2m+1, then the row
operation for the ECOC is performed. The resulting codeword
table gives that of an (M − 1, log2 M,M/2) modified RM
(mRM) code with M rows and N (= M − 1) columns.

Example 2. For M = 8, codeword table of (8, 4, 4) RM code,
and that of (7, 3, 4) mRM code are shown in Tables II and III,
respectively. □

TABLE II
CODEWORD TABLE OF THE (8, 4, 4) RM CODE.

d1 d2 d3 d4 d5 d6 d7 d8

c1 1 1 1 1 1 1 1 1
c2 1 0 1 0 1 0 1 0
c3 1 1 0 0 1 1 0 0
c4 1 0 0 1 1 0 0 1
c5 1 1 1 1 0 0 0 0
c6 1 0 1 0 0 1 0 1
c7 1 1 0 0 0 0 1 1
c8 1 0 0 1 0 1 1 0
c9 0 0 0 0 0 0 0 0
c10 0 1 0 1 0 1 0 1
c11 0 0 1 1 0 0 1 1
c12 0 1 1 0 0 1 1 0
c13 0 0 0 0 1 1 1 1
c14 0 1 0 1 1 0 1 0
c15 0 0 1 1 1 1 0 0
c16 0 1 1 0 1 0 0 1
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TABLE III
CODEWORD TABLE OF THE (7, 3, 4) MRM CODE.

d1 d2 d3 d4 d5 d6 d7

c1 1 1 1 1 1 1 1
c2 0 1 0 1 0 1 0
c3 1 0 0 1 1 0 0
c4 0 0 1 1 0 0 1
c5 1 1 1 0 0 0 0
c6 0 1 0 0 1 0 1
c7 1 0 0 0 0 1 1
c8 0 0 1 0 1 1 0

III. CODEWORD TABLE BASED ON CONSTRUCTIVE
CODING

A. Modified RM Code and Hadamard Matrix

The Plotkin bound for binary codes is given by the following
formula [8]:

(Plotkin Bound) D ≤ NM

2(M − 1)
,

(5)

where the RHS is the average value of the Hamming distance
between any two different codewords. If the bound (5) is
satisfied by equality, it is one of a few equidistant codes, and
it is an excellent code, since it has the largest distance among
them. As shown in C. of Section II, the mRM code is supe-
rior compare to the (M, log2 M,M/2) orthogonal code with
relatively high rates, which achieve a linear equidistant code
with the distance M/2, where N = M − 1 holds. However,
an mRM code exists only the case where N = 2m − 1.

On the other hand, for the Hadamard matrix HM whose
M ×M elements are from {−1,+1}, the codeword table of
the equidistant code is also obtained by replacing +1’s by
0’s, and −1’s by 1’s and removing the all 0’s column (or the
all 1’s column), the resultant codeword table gives an (M −
1, log2 M,M/2) code which has the same code parameter as
that given by mRM code, where N = 2m − 1 holds 4.

In addition, any positive integer ℓ (ℓ ≥ 3), the Hadamard
matrix HM is expected to exist, when M = 4ℓ [8], [9],
[12]. Hence there is a hypothesis that it exists [8], [13], and
examples are known with their construction methods [10].

Example 3. Example of Hadamard matrix H12 [8] is shown
in Table IV.

B. Simplex Code

An (N, log2(N + 1), (N + 1)/2) binary simplex code is
known to be generated by a (2m − 1,m, 2m−1) dual code of
the (2m−1, 2m−1−m, 3) Hamming code [9] . In that sense,
the modified RM code gives another method for generating
the simplex code. This is, however, only the case when N =
2m − 1.

If we add an overall parity check to the codeword of the
simplex code described above, and replace 0’s by +1’s, and

4The ECOC using Hadamard matrix only in the case M = 2m − 1 has
been discussed as Hadamard ECOC in [11].

TABLE IV
HADAMARD MATRIX H12 (M = 12) [8]

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 -1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1
+1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1 -1
+1 +1 -1 -1 -1 +1 +1 +1 -1 +1 -1 -1
+1 -1 -1 -1 +1 +1 +1 -1 +1 -1 -1 +1
+1 -1 -1 +1 +1 +1 -1 +1 -1 -1 +1 -1
+1 -1 +1 +1 +1 -1 +1 -1 -1 +1 -1 -1
+1 +1 +1 +1 -1 +1 -1 -1 +1 -1 -1 -1
+1 +1 +1 -1 +1 -1 -1 +1 -1 -1 -1 +1
+1 +1 -1 +1 -1 -1 +1 -1 -1 -1 +1 +1
+1 -1 +1 -1 -1 +1 -1 -1 -1 +1 +1 +1
+1 +1 -1 -1 +1 -1 -1 -1 +1 +1 +1 -1

1’s by −1’s, the resulting M × M codeword table forms a
Hadamard matrix HM . This means that we can easily obtain
the (M − 1, log2 M,M/2) simplex code from a given HM ,
since the all 0’s column (or the all 1’s column) exists, where
M = 2m = N + 1 holds.

For M = 4ℓ (ℓ ≥ 3) except M = 2m, a codeword table
of the simplex code can be constructed in a similar manner,
i.e., by removing the all 0’s (or the all 1’s) columns of a
given Hadamard matrix. As an example, in Table IV, the heavy
square line shows the codeword table of a simplex code for
M = 12 with replacing +1’s by 0’s, and −1’s by 1’s.

Hereafter, we discuss the performance of the ECOC con-
structed by simplex codes and their related codes, since our
interest is concentrated to them 5.

IV. PERFORMANCE OF ECOC UING CONSTRUCTIVE
CODING

A. Performance Evaluation Methods for ECOC

Let us give data discussed here as follows:
• Artificial Data: M -dimensional multi-valued classifica-

tion data are generated from an M -dimensional Gaussian
distribution with mean µ and variance Σ2, denoted by
N (µ,Σ2) [15], where we set µ = (µ1, µ2, . . . , µM ),
µi = µ for i = 1, 2, . . . ,M , and Σ2 = σ2IM , where
IM is the M ×M identity matrix.

• Benchmark Data: The handwritten numbers and English
characters, EMNIST data [16].

The performance evaluation of the ECOC is taken by the
average probability of the worst classification error between
categories Pce, which is often discussed in the classification
problems for given N and M , and will be later defined by
(10).

B. Analysis of Classification Performance for Simplex Codes

Input the data x into the j-th binary classifier dj of the
codeword table W = [wij] given by constructive coding.
Assuming that the output fj(wij |x) of dj is an ideal binary
classifier which outputs the true posterior probability, the

5It is very interesting to note that the Bayes optimal ECOC has been shown
to be obtained if and only if equidistant codes are used [14].
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estimated category cî of the input x is given by the following
equations [6], [17]:

î = argmin
i

g(ci|x), (6)

where for w ∈ {0, 1},

fj(w|x) =
M∑

i′=1|wi′j=w

Pr{ci′ |x}, (7)

and

g(ci|x) =
N∑
j=1

(1− fj(wij |x)). (8)

Example 4. In the case of codeword table of an (N,K,D)
equidistant code, the function g(ci|x) is given by the following
equation under the proper assumptions:

g(ci|x) = D[1− Pr{ci|x}]. (9)

Note that for equidistant codes, the function g(·|·) depends
only on category ci and not on the other categories ci′(i′ ̸= i),
and is proportional to D.

On the other hand, the performance evaluation variable Pce

described in A. of this section is defined by the following
equation:

Pce =

M∑
i=1

P (ci)
∑
i′ ̸=i

Pr{g(ci′ |x) ≥ g(ci|x)}/(M − 1). (10)

C. Comparison between RM Codes and mRM Codes

We will show that the mRM code improves the classification
performance of the ECOC by removing the complement
codewords of the RM code.

When (µ, σ2) = (1.0, 0.1) for the artificial data, the compu-
tational result is shown in Fig. 1. Here for M = 8, the number
of the complement codewords is s, and the probability of the
worst classification error between the categories Pce, given
by (10). When s = 0, the (7, 3, 4) mRM code (Table III)
is used, and when s > 0, the upper eight codewords of the
codeword table of the (8, 4, 4) RM code (Table II) are focused
which is an (8, 3, 4) subcode of the original RM code. If
s = 1, then replace c8 by c9 since c1 = cC9 . If s = 2, then
in addition replace c7 by c10, since c2 = cC10. Sequentially
increase to replace the complement codewords for s = 3 and
4, and calculate Pce.

We also examined benchmark data as experimental data,
where the EMNIST data [16] are used. The performance
comparison method between the RM code and the mRM
code for the benchmark data EMNIST is quite similar to
that for the artificial data given by Fig. 1, and the results
are as shown in Fig. 2. However, the method of selecting a
pair of a codeword and its complement is performed by all
combinations of possible selection methods, and the average
is taken to give Pce. The reason is that the distribution of
characteristic vectors for real data generally differs depending
on the categories.

Fig. 1. Performance (Pce) comparison between RM codes and mRM codes
for artificial data (µ, σ2) = (1.0, 0.1).

Fig. 2. Performance comparison (Pce) between RM codes and mRM codes
for benchmark data (EMNIST).

D. The Probability of Classification Error between Categories
Pce for ECOC using Simplex Codes

In order to compare the performance of simplex codes and
exhaustive codes, we conducted analysis and experiments us-
ing artificial data (µ, σ2) = (1.0, 0.1), (6)-(9), and benchmark
data (EMNIST). The results are summarized in Table V for
each M . Here, in the case of artificial data, they are used to
compute the probability of error by the error function. We
also summarized the results obtained by the benchmark data
for each M by selecting a subset of them in Table V, where
a DNN (Deep Neural Network) is used 6.

6A type of convolutional neural network with 5 layers is applied.
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TABLE V
PERFORMANCE (Pce) OF THE SIMPLEX CODES AND THE EXHAUSTIVE

CODES.

M
Artificial Data Benchmark Data

Simplex Exhaustive Simplex Exhaustive DNN
4 0.0128 0.0128 0.00312 0.00271 0.00625
8 0.0124 0.0124 0.00259 0.00246 0.01000
12 0.0124 0.0124 0.00481 0.00506 0.01667

V. SYSTEM EVALUATION USING A TRADE-OFF FUNCTION

A. Trade-off Relationship

Generally speaking, the ECOC has a trade-off relationship
between the code length N (investment cost) and the proba-
bility of classification error Pce (performance deterioration)
for a given number of categories M (system scale) (See
Appendix A, Table VI). Here, the performance of the simplex
code is evaluated by Pce, referring that of the shortened
exhaustive code of length N , where Nmin ≤ N ≤ Nmax,
and Nmin = ⌈log2 M⌉.

B. System Evaluation of ECOC using Simplex Code

In terms of trade-offs, pay attention to “If we tolerate a
slight increase in investment cost, we can decrease the per-
formance degradation drastically” [18]. This is called flexible
(See Appendix A, Fig. 6 (1)). When the trade-off relationship
is given by a convex downward curve of the ECOC for
the system scale M , normalize it as n = N/Nmax and
pce = Pce/Pce,max, and enable to relatively compare with
any M . Here, Nmax (Nmin) is the maximum value (minimum
value) of the domain of the code length N of shortened
exhaustive codes, Nmax = 2M−1 − 1 (Nmin = ⌈log2 M⌉),
and Pce,max = 1/2.

C. Computational Results by Artificial Data [17], [19]

Hereafter, we note that N and Pce are normalized by Nmax

and Pce,max, respectively. The performance of simplex codes
for M = 4, M = 12, and M = 16, are illustrated by
■ together with the trade-off curves between n and pce for
shortened exhaustive codes in Fig. 3. Regarding the values
pce’s for the ■ of simplex codes be a constant for any M in
Fig. 3, we have the relationships between M and n are as
shown in Fig. 5.

D. Experimental Results by Benchmark Data

The performance of simplex codes for M = 4,M = 12,
and M = 16, are also illustrated by ■ together with the trade-
off curves between n and pce for shortened exhaustive codes
in Fig. 4. By the similar assumption, we have the relationships
between M and n are as shown in Fig. 5 which is the same as
that for the artificial data, since the relationship between M
and n is derived when the values of pce

′s for different n are
regarded to be a constant for any M .

Fig. 3. Trade-off relationship between n and pce by the simplex codes and
the shortened exhaustive codes for artificial data (µ, σ2) = (1.0, 0.1).

Fig. 4. The trade-off relationship between n and pce of the simplex codes
and the shortened exhaustive codes for benchmark data (EMNIST).

VI. DISCUSSIONS

A. Performance Improvement of RM code by mRM code

As shown in Fig. 1 and Fig. 2, in both cases, the number of
complements is increased from s = 0 (the case of the mRM
code) to s = 1, 2, 3, and 4, by replacing the s codeword(s) of
the mRM code with its (their) complement(s) for M = 8. The
subcode of the RM code is constructed by this method with
adding an overall parity, and Pce is evaluated. As a result, it
can be concluded that conversely the mRM code is obtained
by removing the complement codeword from the RM code,
thus the performance of the RM codes is improved by the
mRM codes.

B. Comparison Between Simplex Codes and Exhaustive codes

The performance Pce of the exhaustive codes is theoretically
considered to be the best value which can be achieved by the
ECOC. From Table V, for the artificial data, the theoretical
value of the simplex code matches that of the exhaustive code.
In addition, it can be seen that the benchmark data shows the
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Fig. 5. The relationship between n and M of the mRM codes and the simplex
codes for both the artificial data (µ, σ2) = (1.0, 0.1) and the benchmark data
(EMNIST) .

values for the simplex codes also very close to those of the
exhaustive codes except in the case of the DNN.

C. Properties of Simplex Codes by System Evaluation Model

It is useful to discuss the performance of the simplex code
along with that of the shortened exhaustive code in order to
find out where the performance of the simplex code is in that
of the shortened exhaustive code. Figs. 3 and 4 are for that
purpose.

From Figs. 3 and 4, for both artificial and benchmark data,
the following results are clarified:

(i) For a given M , the simplex code pce (indicated by
■) is almost on the trade-off curve for the shortened
exhaustive code. Furthermore, it is close to the minimum
n of the actually valid shortened exhaustive code, which
indicate that pce is increasing rapidly at n smaller than
this. Therefore, simplex code is one of the important
codes for which shortened exhaustive code exhibits
flexible property (See Appendix A, Fig. 6 (1)).

(ii) As M becomes larger, the pce of the simplex code goes
toward the origin. Referencing the trade-off curve of
the shortened exhaustive code, the elastic property is
satisfied (See Appendix A, Fig. 6 (2)). If we do not
prepare a graph with larger scale on the horizontal axis,
unfortunately, for M = 16 or more, they will overlap
with the result for M = 12 .

(iii) As M increases, the interval between the positions
(indicated by ■) of pce decreases. Letting the values
of pce be regarded as almost the same for any M , then
Fig. 5 is obtained. The relationship between n and M is
illustrated by a convex down curve, hence the ECOC

by simplex codes has effective elastic property (See
Appendix A, Fig. 6 (3)).

D. Further Remarks

In the above discussion so far, there exists a simplex code
for M = 2m (m ≥ 2) or M = 4ℓ (ℓ ≥ 3), where the obtained
pce is shown by ■ in the figures. If M = 2m, then there are
2m+1 − 2m − 1 = 2m − 1 cases, where the simplex code
cannot be available. On the other hand, if M = 4ℓ, only the
4(ℓ + 1) − 4ℓ − 1 = 3 is sufficient. This value in the former
increases exponentially with increasing m, and is always 3
in the latter. A simple way to interpolate between them is
to remove codewords (to construct a subcode). For example,
if M = 8, we can use the (7, log2 7, 4), (7, log2 6, 4), and
(7, log2 5, 4) codes for M = 7, 6, and 5, respectively. Note
that, however, there is a reverse in performance between the
(7, log2 4 = 2, 4) subcode of the (7, 3, 4) simplex code and
the (3, log2 4 = 2, 2) simplex code. This brings a non-convex
curve in Fig. 5 only at M = 4 and at M = 8 for the mRM
code.

VII. CONCLUDING REMARKS

It has been shown that the modified RM code proposed by
M. Goto and M. Kobayashi [7] for improving the performance
of ECOC is a linear equidistant code, and gives one of the
methods for generating the simplex code with N = 2m − 1.
From the ECOC’s point of view, it is very interesting that
simplex code is better than the RM code which is one of the
excellent codes from the viewpoint of theory of error correct-
ing code. It is known that the simplex codes can be generated
from the Hadamard matrices, which is conjectured to exist
for multiples of 4. So it is applicable enough for required M
from the example of the number of categories (codewords)
M ≤ 1000 (except 668, 716, and 892) [10]. It is sufficiently
practical to solve the classification problem. Furthermore, in
this paper, it is clarified by the system evaluation model that
the excellent properties of ECOC using the simplex code have
elastic and effective elastic. These properties imply that the
relative performance degradation does not occur even if the
number of categories M increases.

The codeword construction methods which combines the
simplex code and other good codes are remained as future
works.
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APPENDIX

A. System Evaluation Model Based on Trade-off Relationship

1) Trade-off model for QA systems: In the latter decade of
1970’s through early 80’s, J. Pearl and A. Crolotte discussed
the trade-off between the amount of memory and the error
in QA (Question Answering) systems based on rate-distortion
theory [18].

TABLE VI
CORRESPONDENCE TABLE BETWEEN RATE-DISTORTION, GENERAL

SYSTEM EVALUATION MODEL AND ECOC.

Rate-Distortion
Theory [18]

System Evaluation
Model [18], [20]

ECOC

Rate (R) Investment Cost (r) Number of Binary Classifiers
(n)

Distortion (D) Performance Degra-
dation (d)

Probability of Classification
Error between Categories
(pce)

Scale of System (G) Number of Categories (M )

Rate-distortion theory discusses data compression by the
trade-off relationship between rate and distortion [18]. The
rate-distortion function can be written as:

R = R(D). (11)

2) Trade-off model for system evaluation: Generally, the
rate R corresponds to the investment cost of a system, and
distortion D, the performance degradation of the system (See
Table VI). By extending the rate-distortion model, we have
proposed the trade-off model for system evaluation [20], where
we have also introduced a parameter G as the scale of the
system. Let the rate R be normalized by the maximum of
R, Rmax, and the distortion D, by the maximum of D,
Dmax, then we have the following normalized function by
r = R/Rmax, and d = D/Dmax, and introducing G:

r = r(d;G). (12)

For evaluation of the systems, we define the following prop-
erties to the normalized trade-off system evaluation function
(12):

Definition 2. (1) Flexible [20]: The system is “flexible”,
if r = r(d;G) is a decreasing and convex downward
function of d. And the system A with r = rA(d;G) is
more flexible than the system B with r = rB(d;G), if
rA(d;G) < rB(d;G) for arbitrary d (0 < d < 1), and
G (G > 1). (See Fig. 6 (1)).

(2) Elastic [18]: The system with r = r(d;G) is elastic, if
r = r(d;G) is flexible and a decreasing function of G
for arbitrary d (0 < d < 1). (See Fig. 6 (2)).

(3) Effective elastic [20]: The system is effective elastic,
if the system is elastic and r is a convex downward
function of G. (See Fig. 6 (3)).

Fig. 6. Trade-off model for system evaluation
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