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There are two methods for solving the multi-valued classification problem:

(i) a method of directly extending a single binary classifier to a multi-valued
classifier and

(if) a method of constructing a multi-valued classifier using multiple binary
classifiers.
—> Error Correcting Output Code (ECOC)
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I. INTRODUCTION

[Code construction]

a Reed-Muller (RM) code
| ===+ modifying the RM code to be suitable for the ECOC
a modified RM (mRM) code [7]

11 relationship
Hadamard matrix [8]-[10]

<

a class of the simplex codes- = = satisfy the Plotkin bound by the equality
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[System Evaluations]

the trade-off relationships between :
-code length (system investment cost) N and
-the probability of classification error P, between categories
(system performance degradation)

- for the number of categories (system scale) M,
using (a) artificial data and (b) benchmark data

It is shown that as the number of categories M becomes large, the ECOC
system has “elastic property” and “effective elastic property”.

Appendix A TABLE VI
CORRESPONDENCE TABLE BETWEEN RATE-DISTORTION, GENERAL
SYSTEM EVALUATION MODEL AND ECOC.
Rate-Distortion System Evaluation | ECOC
Theory [18] Model [18], [20]
Rate (R) Investment Cost (r) | Number of Binary Classifiers
(n)
Distortion (D) Performance Degra- | Probability of Classification Trade-off rela'[ionships
dation (d) Error between Categories
(pce)
Scale of System (G) | Number of Categories (M)
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II. CODEWORD TABLES

A. Configuration of Codeword Tables and Their Properties

T'he performance of the ECOC 1s determined by the code-
word table W with M rows and N columns. where

W = [w;;]. w;; € {0,1}
(i=1,2.... M:j=12....N). (1)

The i-th row of W, ¢;, and the j-th column of W, d; are
represented by

c; = (w1, Wi, ..., W;N), (2)

and

where T indicates the transpose of the vector. Here, the i-th
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Codeword Table

> N\ <
d1 d2 dN
C1
C>
M w

Cw™m

ECOC constructive code
N | # of binary classifiers code length
M # of categories # of codewords

(N, log,M, D) code
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Definition 1. Letting a binary vector of length L be

w = (uy,us,...,ur), we call the binary vector u® =

(u'f us',...,u¥), the complement vector of u, where u; &

uy = 1 (ﬁ = 1,2,..., L) holds, and the symbol & denotes
the exclusive OR operation.

Examples

0 == 1:interchanged

I—\HOHOOS
olole|lolw| - X

(M=6)
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Note that obviously for the column vectors, valid codeword
tables do not contain:

(1) 1dentical column vectors,
(11) the all O’s and the all 1’s column vectors, and
(iii) the column vector d%, if d; exists for any j. 2
These are called the column operation for the ECOC.

Similarly, for the row vectors, they do not contain:

(1) identical row vectors, and
(11) the row vector cf, if ¢; exists for any i.
These are called the row operation for the ECOC.

3

“This is because they have the same classification boundary and the outputs
wof them are highly correlated.

3This is because the category ¢; and the category cf"' are always classified
into separate groups, even if the all binary classifiers which divide into two

groups are used.
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B. Exhaustive Codes [6]

For a given M, generate the all 2 column vectors of length
M. Then the column operation described above is performed
on these column vectors. The resultant codeword table gives

that for the (Nmax,logs M, (Nmax + 1)/2) exhaustive code
with M rows and N,,,« columns, where

Nmax — Qﬂ{_l — 1. (4)

Example : Case of M=5, N=15

> 32 >
e 15 > |
olojojo|o|ofo|ojojojojofofojo|alt 1|1 |{1|t]|t]|t|{1|{1|{1|1]|1]{1]1]1]|A
olojojolo|ofofo|t1|t|1|1|{1|1|1]|1|o|o|ofojo]ofojo|t1|1|1|1]|1]|1]1]|A
> |ollo|o|o|t1|1|1]|1]|o|o|ofo|1|1]|1|1lfo|ojojo|t|1|[1|[1|o|ofjojo|1|1|1]|H
ofo|1]|1]|o|of1|1|o]o|1|1|o|o|1]|1o|o|1|1|o]|o|1|1]|ofo|1]|1]|0|O]|1|H
Llojilol1|ol1]of1]o]t]of1]|of1]ol1jo|1|o|1]|o|1|o|1]|o|1|0]|1|0|1]|0]|H
A T AUA T A
dj "= de
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C. Modified Reed-Mullar Codes [7]

For any positive integer m (> 2), there is a first order
(2™, m + 1,2™~1) linear Reed-Muller (RM) code. Here,
generate an RM code such that 2M = 2™F!, then the row
operation for the ECOC is performed. The resulting codeword
table gives that of an (M — 1,log, M, M /2) modified RM
(mRM) code with M rows and N (= M — 1) columns.

Example 2. For M = 8, codeword table of (8,4,4) RM code,
and that of (7,3,4) mRM code are shown in Tables II and III,

respectively. [
TABLE 11 TABLE III
CODEWORD TABLE OF THE (8 4, 4) RM CODE. CODEWORD TABLE OF THE (? 34:] MRM CODE.
dy | dy | dy | dy | ds | dg | d7 | ds d | dy | ds | dy | ds | ds | dy
1 1 1 | 1 | 1 1 1 c 1 1 1 1 1 1 1
» 2 1 0 1 0 1 0 1 0 ca ] 1 0 1 0 1 0
c3 1 1 0 0 1 1 0 [ cq 1 0 0 1 1 0 0
C. (e [T [0 [0 [ 1 [ FFo+oi7 eI~ | 0 | 0 |1
1 . cs 1 1 1 1 o 0 0 il cs 1 1 1|0 0 0 0
ca 1 0 1 0 0 1 0 1 Cg 0 1 0 0 1 0 1
[ 1 1 0 0 0 [i] 1 1 cr 1 0 0 0 0 1 1
» ca 1 0 0 1 0 1 1 0 Cs ] 1] 1 0 1 1 0
L 3 g ] 0 0 0 0 0 0 0
o co |0 [ T [0 [ T [0 1T [ 01
o1 0 0 1 1 0 0 1 1
C_C - 12 0 1 1 0 0 1 1 0
i . cs 000 o0 T 1T 1T 1
eal ol 1ol 1 1ol 10
15 0 0 1 1 1 1 0 0
C16 0 1 1 0 1 0 0 1
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III. CODEWORD TABLE BASED ON CONSTRUCTIVE
CODING

A. Modified RM Code and Hadamard Matrix

The Plotkin bound for binary codes is given by the following
formula [8]:

NM
i < —_—
(Plotkin Bound) D < M — 1)’

(3)

where the RHS is the average value of the Hamming distance
between any two different codewords. If the bound (5) is
satisfied by equality, it is one of a few equidistant codes,

The (M — 1, log,M, M/2) mRM code is superior compare to the (M, log,M, M/2) orthogonal code
with relatively high rates, which achieve a linear equidistant code with the distance M/2, where N =
M — 1 holds. However, an mRM code exists only the case where N=2m=1.

On the other hand, for the Hadamard matrix H,, whose M X M elements are from {—1, +1}, the
codeword table of the equidistant code is also obtained by replacing +1’s by 0’s, and —1’s by 1’s and
removing the all 0’s column (or the all 1°s column), the resultant codeword table gives an (M — 1,
log,M, M/2) code which has the same code parameter as that given by mRM code, where N = 2™ — 1
holds.

In addition, any positive integer £ (£=3), the Hadamard matrix H,, is expected to exist, when M=
40[8], [9], [12]. Hence there is a hypothesis that it exists [8], [13], and examples are known with
their construction methods [10].
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Example 3. Example of Hadamard matrix H,5 [8] is shown
in Table IV.

TABLE IV
HADAMARD MATRIX Hyo (M = 12) [8]

+1 1 1] Tl +1 1] Tl F1 1] T1 +1 1
+1 -1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1
+1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1 -1
+1 +1 -1 -1 -1 +1 +1 +1 -1 +1 -1 -1
+1 -1 -1 -1 +1 +1 +1 -1 +1 -1 -1 +1
+1 -1 -1 +1 +1 +1 -1 +1 -1 -1 +1 -1
+1 -1 +1 +1 +1 -1 +1 -1 -1 +1 -1 -1
+1 +1 +1 | +1 -1 +1 -1 -1 +1 -1 -1 -1
+1 +1 +1 -1 +1 -1 -1 +1 -1 -1 -1 +1
+1 +1 -1 +1 -1 -1 +1 -1 -1 -1 +1 +1
+1 -1 +1 -1 -1 +1 -1 -1 -1 +1 +1 +1
+1 +1 -1 -1 +1 -1 -1 -1 +1 +1 +1 -1

Replace +1’s by 0’s, and —1’s by 1’s, then we obtain the (11, log212, 6) simplex code.
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B. Simplex Code

An (N, log,(N + 1),(N + 1)/2) binary simplex code
| == -known to be generated by

a(2™—1,m, 2™1) dual code of the (2™ -1, 2 ™ —1—-m, 3) Hamming code [9] .

In that sense, the modified RM code gives another method for generating the
simplex code. This is, however, only the case when

The Hadamard matrix H,, (M =48 for £ (€= 3))))is expected to exist

} == replace +1’s by 0’s, and —1’s by 1’s, and

1=+ by removing the all 0’s (or the all 1’s) columns of a given H,,

(N, log,(N + 1),(N + 1)/2) binary simplex code =
(M-1, log,M, M/2) binary simplex code
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IV. PERFORMANCE OF ECOC UING CONSTRUCTIVE
CODING

A. Performance Evaluation Methods for ECOC

Let us give data discussed here as tollows:

« Artificial Data: M-dimensional multi-valued classifica-
tion data are generated from an M -dimensional Gaussian
distribution with mean p and variance X?, denoted by
N(p,X?) [15], where we set g = (fi1, ptoy- .., finr)-
p; = pfori = 1,2,...,M, and £% = ¢2I,;, where
Iyg is the M x M identity matrix.

+ Benchmark Data: The handwritten numbers and English
characters, EMINIST data [16].

The performance evaluation of the ECOC is taken by the
average probability of the worst classification error between
categories F... which is often discussed in the classification
problems for given N and M, and will be later defined by
(10).

M
Pee = ZP(Q) Y Pr{g(ci|®) > g(eile)} /(M —1). (10)

i=1 i3
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B. Analysis of Classification Performance for Simplex Codes

Input the data = into the j-th binary classifier d; of the
codeword table W = [w;;] given by constructive coding.
Assuming that the output f;(w;;|x) of d; is an ideal binary
classifier which outputs the true posterior probability, the

estimated category c; of the input x is given by the following
equations [6], [17]:

= mffmm glcilx), (6)

where for w € {0,1},

M

filw|lx) = Z Pr{e; |z}, (7)

t'=1|w; ;=w

and

g(cilz) = Z(l fi(wis|z)). (8)
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Example 4. In the case of codeword table of an (N, K, D)
equidistant code, the function g(c;|x) is given by the following
equation under the proper assumptions:

g(cilz) = D[l — Prie;|x}]. 9)

Note that for equidistant codes, the function g(-|-) depends
only on category ¢; and not on the other categories ¢;/ (i’ # i),
and is proportional to D.
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C. Comparison between RM Codes and mRM Codes

The mRM code improves the Pce removing the complement codewords of the RM code
} == conversely

The number of complements is increased by replacing the s codeword(s) of the mRM

code with its (their) complement(s) for M = 8

# of the complements : s = 0 (mMRM code),
1 (replace ¢4 by cg since ¢; = ¢4©),
2 (in addition replace c, by ¢, since ¢, = ¢;,°
3,and 4

(a) Artificial data : (u, ) = (1.0, 0.1) €Numerical computation
(b) Benchmark data : EMNIST < Experiment

0.030

0025

0020

& oots &
0002
The P, is increased as s increased.
0001
0000 *— - T 0000
0 1 2 3 4 1 2
s s
== (127, 3, 64) exhaustive code === (127, 3, 64) exhaustive code
e (7.3.4) mRM code e (7.3,4) mRM code
x  (8,3,4) sub code of (8,4,4) RM code with s complements x  (8,3,4) sub code of (8,4,4) RM code with s complements
Fig. 1. Performance (P,..) comparison between RM codes and mRM codes Fig. 2. Performance comparison (P..) between RM codes and mRM codes

for artificial data (p, 02) = (1.0,0.1). for benchmark data (EMNIST).
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D. The Probability of Classification Error between Categories
P.. for ECOC using Simplex Codes

(@) Artificial data : (n, 6?) = (1.0, 0.1) <Numerical computation

(b) Benchmark data : EMNIST < Experiment
TABLE V
PERFORMANCE ( P ) OF THE SIMPLEX CODES AND THE EXHAUSTIVE
CODES.
M Artificial Data Benchmark Data

Simplex | Exhaustive | Simplex | Exhaustive DNN

4 0.0128 0.0128 0.00312 0.00271 0.00625
8 0.0124 0.0124 0.00259 0.00246 0.01000
12 | 0.0124 0.0124 0.00481 0.00506 0.01667

VI. DISCUSSIONS
B. Comparison Between Simplex Codes and Exhaustive codes

The performance F,.. of the exhaustive codes is theoretically
considered to be the best value which can be achieved by the
ECOC. From Table V, for the artificial data, the theoretical
value of the simplex code matches that of the exhaustive code.
In addition, it can be seen that the benchmark data shows the
values for the simplex codes also very close to those of the
exhaustive codes except in the case of the DNN.
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V. SYSTEM EVALUATION USING A TRADE-OFF FUNCTION

A. Trade off Relationship

The ECOC has a trade-off relationship between
- The code length N (investment cost) and ]
- The probability of classification error P, (performance deterioration)

for a given number of categories M (system scale)

The performance of the simplex code is evaluated by P, referring that of the
shortened exhaustive code of length N, where N.,, <N <N__,and N, = [log, M]

B. System Evaluation of ECOC using Simplex Code

To relatively compare with any M, we normalize the variables as
*n = N/N,,, and
) pce = I:)ce/ Pce,max?
where
|\Imax =2M1—1
|\Imin = “ng M]! and
P =1/2

ce,max —
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APPENDIX

A. Svystem Evaluation Model Based on Trade-off Relationship

The rate-distortion function can be written as:

R =R(D). (11)
Let the rate R be normalized by the maximum of R, R

by the maximum of D, D
r=R/R,...,and d = D/D

max: and the distortion D,
max: then we have the following normalized function by

and introducing G:

max? max?

r=r(d; G). (12)

P

(1) Flexible

¥

(2) Elastic

(3) Effective Elastic
.

(&

I : ) i 1} )
Y, r=ra(da,G) w T =r{d,Ga) d:given
-" . - "'1 . non-edlective clastic
| x\ r=rgldg, G) I|/ r=r{d,G)
1 Il l\-
\ “*!/ e "
"‘-. \l\ I"-. \r\\ {"r — li'- II|I
*, H *, H Fa -~ Lr Y
\\n \‘\ \“ h R\H
0 dy=dy T d0 4 ==7d 0

Fig. 6. Trade-off model for system evaluation
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C. Computational Results by Artificial Data [17], [19]
D. Experimental Results by Benchmark Data

1.0 7= 10 7=
[ »n
1N [— M=4 C [ M=4
L ..-\ _
0.8 1 E‘u" W, Shortened ‘ M=5 081 m'h Shortened M=5
e . — M= o . ] M=6
myy Exhaustive | M=6 it L Exhaustive | -
06 :I|: 1l . ‘\ 0&3 M = 7 06 1 :I|‘|1 1 \\\ ka M = ?
v TTERRAY G |— M=8 v ”':Il \ ' M=8
Q i ‘l \ \ Q gt \ % _
0.4 | E:Iqll ‘. ‘\\ L— M= 12 04 | :|:|I: “ \\\. ' rd;_ 12
i \ m  Simplex ey o B Simplex
R ) \ i [ . \
- :IK\I \\ o2 . ‘\¥
! [
0.0 —.g — : . 00 —LL i - , ,
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 10
n
n

Fig. 3. Trade-off relationship between n and p.. by the simplex codes and Fig. 4. The trade-off relationship between n and p.. of the simplex codes
the shortened exhaustive codes for artificial data (u, @) = (1.0,0.1).

and the shortened exhaustive codes for benchmark data (EMNIST).

0.5
—a— mRM
4 o Simplex
0.4 |
\
|
|
0.3 \
o
8
0.2 \
0.1 *
&\“._
0.0 - . - :
5 10 15 20 25 30

M

Fig. 5. The relationship between n and M of the mRM codes and the simplex
codes for both the artificial data (p, 02) = (1.0,0.1) and the benchmark data
(EMNIST) .
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C. Properties of Simplex Codes by System Evaluation Model

From Figs. 3 and 4, for both artificial and benchmark data, the following results are
clarified:
(i) Flexible property
For a given M, the p., of the simplex code (indicated by H) is almost on the trade-off
curve of the shortened exhaustive code. The shortened exhaustive code exhibits
Flexible property.
(i1) Elastic property
As M becomes larger, the p., of the simplex code goes toward the origin.
(iii) Effective Elastic property
From Fig. 5, as M increases, the interval between the positions (indicated by ) of
P.. decreases.
D. Further Remarks

In the above discussion so far, there exists a simplex code for M =2™ (m > 2) or
M = 4 (£ > 3), where the obtained p., is shown by B in the figures.
(i) I1f M =2™ then there are 2 M1 —2m—1=2M—1 cases, where the simplex code
cannot be available.
(i) If M =4, only the 4(C + 1) —4€ — 1 =3 is sufficient.
eg. M=7:(7,log, 7,4) code, M=6:(7, log, 6, 4) code,and M =5: (7, log, 5, 4) *.

(*) Strictly speaking, note that, however, there is a reverse in performance between the (7, log, 4 = 2, 4) subcode of the (7, 3, 4) simplex
code and the (3, log, 4 = 2, 2) simplex code.
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VII. CONCLUDING REMARKS

(i) It has been shown that the modified RM code proposed by M. Goto and
M. Kobayashi [7] for improving the performance of ECOC is a linear equidistant
code, and gives one of the methods for generating the simplex code with N'=2M=1.

(i1) It is known that the simplex codes can be generated from the Hadamard matrices,
which is conjectured to exist for multiples of 4. So it is applicable enough for required
M from the example of the number of categories (codewords) M < 1000 (except
668, 716, and 892) [10].

(iv) It is sufficiently practical to solve the classification problem. Furthermore, in this
paper, it is clarified by the system evaluation model that the excellent properties of
ECOC using the simplex code have elastic and effective elastic. These properties
imply that the relative performance degradation does not occur even if the number of
categories M increases.

(v) The codeword construction methods which combines the simplex code and other
good codes are remained as future works.




